《五年级下册数学复习资料(优秀4篇)》
数学是研究数量、结构、变化、空间以及信息等概念的一门学科,在人类历史发展和社会生活中,数学也发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。为大家精心整理了五年级下册数学复习资料(优秀4篇),您的肯定与分享是对小编最大的鼓励。
五年级下册数学期末复习资料 篇1
因数与倍数
1、为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)
2、一个数的最小因数是1,最大的因数是本身。一个数的因数的个数是有限的。
3、一个数的最小倍数是本身,没有最大的倍数。一个数的倍数的个数是无限的。
4、一个数的最大因数和最小倍数是相等的,都是它本身。
5、完全数:6的因数有1,2,3,6,这几个因数的关系是:1+2+3=6,像6这样的数叫完全数,也叫完美数。完全数较小的有6,28,496,8128……
6、个位上是0,2,4,6,8的数都是2的倍数。
7、自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。自然数中的数不是奇数就是偶数。
8、奇数+偶数=奇数 奇数+奇数=偶数 偶数+偶数=偶数
偶数±偶数=偶数 奇数±奇数=偶数 奇数±偶数=奇数
偶数个偶数相加是偶数,奇数个奇数相加是奇数。
偶数×偶数=偶数 奇数×奇数=奇数 奇数×偶数=偶数
相临两个自然数之和为奇数,相邻自然数之积为偶数。
如果乘式中有一个数为偶数,那么乘积一定是偶数。
9、个位上是0或5的数,是5的倍数。
10、一个数各位上的数的和是3的倍数,这个数就是3的倍数。
11、3, 5的倍数的特征:个位是0或者5的并且各个数位上的数字之和能被3整除的数。
12、2, 3的倍数的特征:个位是0、2、4、6、8并且各个数位上的数字之和能被3整除的数。
13、2, 3,5的倍数的特征:个位是0并且各个数位上的数字之和能被3整除的数。
14、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。如2,3,5,7都是质数。
15、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。如4,6,8,9,10都是合数。
16、1既不是质数,也不是合数。自然数包括0,1,质数和合数。
17、以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97
18、质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
19、分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。如:4=2×2 ,6=2×3,8=2×2×2。
五年级下册数学第一二单元复习资料 篇2
▼《观察物体》
1、 不同角度观察一个物体 , 看到的面都是两个或三个相邻的面。
2、 不可能一次看到长方体或正方体相对的面。
注意点
1)这里所说的正面、左面和上面,都是相对于观察者而言的。
2)站在任意一个位置,最多只能看到长方体的3个面。
3)从不同的位置观察物体,看到的形状可能是不同的。
4)从一个或两个方向看到的图形是不能确定立体图形的形状的。
5)同一角度观察不同的立体图形,得到的平面图形可能是相同,也可能是不同的。
6)如果从物体的右面观察,看到的不一定和从左面看到的完全相同。
第二单元 因数和倍数
1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。
(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找。
(3)一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
(4)2、3、5的倍数特征
1) 个位上是0,2,4,6,8的数都是2的倍数。
2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。
3)个位上是0或5的数,是5的倍数。
4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。
同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。
5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。
如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等
4:自然数按能不能被2整除来分:奇数、偶数。
奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。
偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
最小的奇数是1,最小的偶数是0.
关系: 奇数+、- 偶数=奇数
奇数+、- 奇数=偶数
偶数+、-偶数=偶数。
5、自然数按因数的个数来分:质数、合数、1、0四类。
质数(或素数):只有1和它本身两个因数。
合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
1: 只有1个因数。“1”既不是质数,也不是合数。
最小的质数是2,最小的合数是4,连续的两个质数是2、3。
每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
20以内的质数:有8个(2、3、5、7、11、13、17、19)
100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97
100以内找质数、合数的技巧:
看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。
关系:奇数×奇数=奇数
质数×质数=合数
6、最大、最小
A的最小因数是:1;
A的最大因数是:A;
A的最小倍数是:A;
最小的自然数是:0;
最小的奇数是:1;
最小的偶数是:0;
最小的质数是:2;
最小的合数是:4;
7、分解质因数:把一个合数分解成多个质数相乘的形式。
用短除法分解质因数 (一个合数写成几个质数相乘的形式)。
比如:30分解质因数是:(30=2×3×5)
8、互质数:公因数只有1的两个数,叫做互质数。
两个质数的互质数:5和7
两个合数的互质数:8和9
一质一合的互质数:7和8
两数互质的特殊情况:
⑴1和任何自然数互质;
⑵相邻两个自然数互质;
⑶两个质数一定互质;
⑷2和所有奇数互质;
⑸质数与比它小的合数互质;
9、公因数、最大公因数
几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。
用短除法求两个数或三个数的最大公因数 (除到互质为止,把所有的除数连乘起来)
几个数的公因数只有1,就说这几个数互质。
如果两数是倍数关系时,那么较小的数就是它们的最大公因数。
如果两数互质时,那么1就是它们的最大公因数。
10、公倍数、最小公倍数
几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。
用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)
用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)
如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。
如果两数互质时,那么它们的积就是它们的最小公倍数。
11、求最大公因数和最小公倍数方法
用12和16来举例
1、求法一:(列举求同法)
最大公因数的求法:
12的因数有:1、12、2、6、3、4
16的因数有:1、16、2、8、4
最大公因数是4
最小公倍数的求法:
12的倍数有:12、24、36、48、…
16的倍数有:16、32、48、…
最小公倍数是48
2、求法二:(分解质因数法)
12=2×2×3
16=2×2×2×2
最大公因数是:
2×2=4(相同乘)
最小公倍数是:
2×2×3×2×2= 48(相同乘×不同乘)
五年级下册数学知识点复习资料梳理 篇3
第一单元知识点(四则运算)
1、 在没有括号的算式里,如果只有加、减法或者只有乘除法,都要从左往右按顺序计算。(这是同级运算)
2、 在没有括号的算式里,有乘、除法和加减法,要先算乘除法,在算加减法。(这是两级运算)
3、 算式里有括号,先算括号里面的,在算括号外面的。
4、 加法、减法、乘法和除法统称四则运算。
5、 一个数加上0还得原数,一个数减去0也得原数。
6、 被减数等于减数,差是0。
7、 一个数和零相乘,仍得0。
8、 0除以一个非0的数,还得0。
9、 0不能作除数。
10、 在解决问题时,如果列综合算式,必须用脱式计算。
11、 任何数除以0都得0。(×)因为0不能做除数。
五年级下册数学期末复习资料 篇4
一、学习目标:
1、理解分数的意义和基本性质,会比较分数的大小,会把假分数化成带分数或整数,会进行整数、小数的互化,能够比较熟练地进行约分和通分;
2、掌握因数和倍数、质数和合数、奇数和偶数等概念,以及2、3、5的倍数的特征;会求100以内的两个数的公因数和最小公倍数;
3、理解分数加、减法的意义,掌握分数加、减法的计算方法,比较熟练地计算简单的分数加、减法,会解决有关分数加、减法的简单实际问题;
4、知道体积和容积的意义以及度量单位,会进行单位之间的换算,感受有关体积和容积单位的实际意义;
5、结合具体情境,探索并掌握长方体和正方体的体积和表面积的计算方法,探索某些实物体积的测量方法;
6、能在方格纸上画出一个图形的轴对称图形,以及将简单图形旋转90度;欣赏生活中的图案,灵活运用平移、对称和旋转在方格纸上设计图案;
7、通过丰富的实例,理解众数的意义,会求一组数据的众数,并解释结果的实际意义;根据具体的问题,能选择适当的统计量表示数据的不同特征;
8、认识复式折线统计图,能根据需要选择合适的统计图表示数据。
二、学习难点:
1、用轴对称的知识画对称图形;
2、确区别平移和旋转的现象,并能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形;
3、理解因数和倍数的意义;因数和倍数等概念间的联系和区别;正确判断一个常见数是质数还是合数;
4、长方体表面积的计算方法;长方体、正方体体积计算;
5、理解、归纳分数与除法的关系;用除法的意义理解分数的意义;
6、理解真分数和假分数的意义及特征;
7、理解和掌握分数和小数互化的方法。
三、知识点概括总结:
1、轴对称:
如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,这个图形就叫做轴对称图形,这时,我们也说这个图形关于这条直线(成轴)对称。
对称轴:折痕所在的这条直线叫做对称轴。如下图所示:
小学数学知识点
2、轴对称图形的性质:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。
3、轴对称的性质:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。这样我们就得到了以下性质:
(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
(2)类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(3)线段的垂直平分线上的点与这条线段的两个端点的距离相等。
(4)对称轴是到线段两端距离相等的点的集合。
4、轴对称图形的作用:
(1)可以通过对称轴的一边从而画出另一边;
(2)可以通过画对称轴得出的两个图形全等。
5、因数:整数B能整除整数A,A叫作B的倍数,B就叫做A的因数或约数。在自然数的范围内例:在算式6÷2=3中,2、3就是6的因数。
6、自然数的因数(举例):
6的因数有:1和6,2和3.
10的因数有:1和10,2和5.
15的因数有:1和15,3和5.
25的因数有:1和25,5.
7、因数的分类:除法里,如果被除数除以除数,所得的商都是自然数而没有余数,就说被除数是除数的倍数,除数和商是被除数的因数。
我们将一个合数分成几个质数相乘的形式,这样的几个质数叫做这个合数的质因数。
8、倍数:对于整数m,能被n整除(n/m),那么m就是n的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。
9、完全数:完全数又称完美数或完备数,是一些特殊的自然数。它所有的真因子(即除了自身以外的约数)的和(即因子函数),恰好等于它本身。
10、偶数:整数中,能够被2整除的数,叫做偶数。
11、奇数:整数中,能被2整除的数是偶数,不能被2整除的数是奇数,
12、奇数偶数的性质:
关于奇数和偶数,有下面的性质:
(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;
(2)奇数跟奇数和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和都是偶数;
(3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数;
(4)除2外所有的正偶数均为合数;
(5)相邻偶数公约数为2,最小公倍数为它们乘积的一半。
(6)奇数的积是奇数;偶数的积是偶数;奇数与偶数的积是偶数;
(7)偶数的个位上一定是0、2、4、6、8;奇数的个位上是1、3、5、7、9.
13、质数:指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。
14、合数:比1大但不是素数的数称为合数。1和0既非素数也非合数。合数是由若干个质数相乘而得到的。
质数是合数的基础,没有质数就没有合数。
15、长方体:由六个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫长方体。长方体的任意一个面的对面都与它完全相同。
16、长、宽、高:长方体的每一个矩形都叫做长方体的面,面与面相交的线叫做长方体的棱,三条棱相交的点叫做长方体的顶点,相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
17、长方体的特征:
(1)长方体有6个面,每个面都是长方形,至少有两个相对的两个面完全相同。特殊情况时有两个面是正方形,其他四个面都是长方形,并且完全相同。
(3)长方体有12条棱,相对的棱长度相等。可分为三组,每一组有4条棱。还可分为四组,每一组有3条棱。
(3)长方体有8个顶点。每个顶点连接三条棱。
(4)长方体相邻的两条棱互相(相互)垂直。
18、长方体的表面积:因为相对的2个面相等,所以先算上下两个面,再算前后两个面,最后算左右两个面。
设一个长方体的长、宽、高分别为a、b、c,则它的表面积S:
S=2ab+2bc+2ca
=2(ab+bc+ca)
19、长方体的体积:
长方体的体积=长×宽×高
设一个长方体的长、宽、高分别为a、b、c,则它的体积V:
V=abc=Sh
20、长方体的棱长:
长方体的棱长之和=(长+宽+高)×4
长方体棱长字母公式C=4(a+b+c)
相对的棱长长度相等
长方体棱长分为3组,每组4条棱。每一组的棱长度相等
21、正方体:侧面和底面均为正方形的直平行六面体叫正方体,即棱长都相等的六面体,又称“立方体”、“正六面体”。正方体是特殊的长方体。
22、正方体的特征:
(1)有6个面,每个面完全相同。
(2)有8个顶点。
(3)有12条棱,每条棱长度相等。
(4)相邻的两条棱互相(相互)垂直。
23、正方体的表面积:
因为6个面全部相等,所以正方体的表面积=一个面的面积×6=棱长×棱长×6
设一个正方体的棱长为a,则它的表面积S:
S=6×a×a或等于S=6a2
24、正方体的体积:
正方体的体积=棱长×棱长×棱长;设一个正方体的棱长为a,则它的体积为:
V=a×a×a
25、正方体的展开图:正方体的平面展开图一共有11种。
小学数学知识点
26、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。表示这样的一份的数叫分数单位。
27、分数分类:分数可以分成:真分数,假分数,带分数,百分数
28、真分数:分子比分母小的分数,叫做真分数。真分数小于一。如:1/2,3/5,8/9等等。真分数一般是在正数的范围内研究的。
29、假分数:分子大于或者等于分母的分数叫假分数,假分数大于1或等于1.
假分数通常可以化为带分数或整数。如果分子和分母成倍数关系,就可化为整数,如不是倍数关系,则化为带分数。
30、分数的基本性质:分数的分子和分母同时乘以或除以一个不为0的数,分数的值不变。
31、约分: