《小学参考的奥数知识点:约数与倍数【通用5篇】》
别把数学想象为硬梆梆的、死绞蛮缠的、令人讨厌的、有悖于常识的东西,它只不过是赋予常识以灵性的东西。下面是整理的小学参考的奥数知识点:约数与倍数【通用5篇】,希望大家可以喜欢并分享出去。
相关示例 篇1
因756=2*2*3*3*3*7,4400=2*2*2*2*5*5*11,19845=3*3*3*3*5*7*7,9000=2*2*2*3*3*5*5*5,这里有素数2,3,5,7,11.2最高为4次方16,3最高为4次方81,5最高为3次方125,7最高为2次方49,还有素数11.得最小公倍数为16*81*125*49*11=87318000.
小学参考的奥数知识点:约数与倍数 篇2
约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
最大公约数的性质:
1、几个数都除以它们的最大公约数,所得的几个商是互质数。
2、几个数的最大公约数都是这几个数的约数。
3、几个数的公约数,都是这几个数的最大公约数的约数。
4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。
例如:12的约数有1、2、3、4、6、12;
18的约数有:1、2、3、6、9、18;
那么12和18的公约数有:1、2、3、6;
那么12和18最大的公约数是:6,记作(12,18)=6;
求最大公约数基本方法:
1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2、短除法:先找公有的约数,然后相乘。
3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。
公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
12的倍数有:12、24、36、48……;
18的倍数有:18、36、54、72……;
那么12和18的公倍数有:36、72、108……;
那么12和18最小的公倍数是36,记作[12,18]=36;
最小公倍数的性质:
1、两个数的任意公倍数都是它们最小公倍数的倍数。
2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。
求最小公倍数基本方法:
1、短除法求最小公倍数;
2、分解质因数的方法
小学参考的奥数知识点:约数与倍数 篇3
(1)公约数和最大公约数
几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
例如:4是12和16的。最大公约数,可记做:(12 ,16)=4
(2)公倍数和最小公倍数
几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
例如:36是12和18的最小公倍数,记作[12,18]=36。
(3)最大公约数和最小公倍数的关系
如果用a和b表示两个自然数
1、那么这两个自然数的最大公约数与最小公倍数关系是:
(a,b)×[a,b]=a×b。
(多用于求最小公倍数)
2、(a,b) ≤ a ,b ≤ [a,b]
3、[a,b]是(a,b)的倍数,(a,b)是[a,b]的约数
4、(a,b)是a+b 和a-b 的约数,也是(a,b)+[a,b]和(a,b)-[a,b]的约数
(4)求最大公约数的方法很多,主要:短除法、分解质因数法、辗转相除法。
例如:
1、(短除法)用一个数去除30、60、75,都能整除,这个数最大是多少?
解:∵
(30,60,75)=5×3=15
这个数最大是15。
2、(分解质因数法)求1001和308的最大公约数是多少?
解:1001=7×11×13(这个质分解常用到) , 308=7×11×4
所以最大公约数是7×11=77
在这种方法中,先将数进行质分解,而后取它们“所有共有的质因数之积”便是最大公约数。
3、(辗转相除法)用辗转相除法求4811和1981的最大公约数。
解:∵4811=2×1981+849,
1981=2×849+283,
849=3×283,
∴(4811,1981)=283。
补充说明:如果要求三个或更多的数的最大公约数,可以先求其中任意两个数的最大公约数,再求这个公约数与另外一个数的最大公约数,这样求下去,直至求得最后结果。
(5)约数个数公式
一个合数的约数个数,等于它的质因数分解式中每个质因数的个数(即指数)加1的连乘的积。
例如:求240的约数的个数。
解:∵240=24×31×51,
∴240的约数的个数是
(4+1)×(1+1)×(1+1)=20,
∴240有20个约数。
什么叫最小公倍数 篇4
最小公倍数(Least Common Multiple,缩写L.C.M.),是数论中的一个概念。两个整数公有的倍数称为它们的公倍数,其中最小的一个正整数称为它们两个的最小公倍数。如果有一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数,对于两个整数来说,指该两数共有倍数中最小的一个。计算最小公倍数时,通常会借助最大公约数来辅助计算。
基本定义几个数共有的倍数叫做这几个数的公倍数,其中除0以外最小的一个公倍数,叫做这几个数的最小公倍数。自然数a、b的最小公倍数可以记作[a,b],自然数a、b的最大公因数可以记作(a、b),当(a、b)=1时,[a、b]= a�b。
如果两个数是倍数关系,则它们的最小公倍数就是较大的数,相邻的两个自然数的最小公倍数是它们的乘积。
最小公倍数=两数的乘积/最大公约(因)数, 解题时要避免和最大公约(因)数问题混淆。
最小公倍数的适用范围:分数的加减法,中国剩余定理(正确的题在最小公倍数内有解,有唯一的解)。
因为,素数是不能被1和自身数以外的其它数整除的数;素数X的N次方,是只能被X的N-1以下次方,1和自身数整除。
所以,在求A,B,C,D,E,…,Z的最小公倍数时,只需要把这些数分解为素数的N次方之间的乘积后,取各素因子的最高次方的乘积,就是这些数的最小公倍数。
小学参考的奥数知识点:约数与倍数 篇5
倍数与约数
最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的一个叫做这几个数的最大公约数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。
互质数: 公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。
通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。
最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
倍数特征:
2的倍数的特征:各位是0,2,4,6,8。
3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。
5的倍数的特征:各位是0,5。
4(或25)的倍数的特征:末2位是4(或25)的倍数。
8(或125)的倍数的特征:末3位是8(或125)的倍数。
7(11或13)的倍数的特征:末3位与其余各位之差(大-小)是7(11或13)的倍数。
17(或59)的倍数的特征:末3位与其余各位3倍之差(大-小)是17(或59)的倍数。
19(或53)的倍数的特征:末3位与其余各位7倍之差(大-小)是19(或53)的倍数。
23(或29)的倍数的特征:末4位与其余各位5倍之差(大-小)是23(或29)的倍数。
倍数关系的两个数,最大公约数为较小数,最小公倍数为较大数。
互质关系的两个数,最大公约数为1,最小公倍数为乘积。
两个数分别除以他们的最大公约数,所得商互质。
两个数的与最小公倍数的乘积等于这两个数的乘积。
两个数的公约数一定是这两个数最大公约数的约数。
1既不是质数也不是合数。
用6去除大于3的质数,结果一定是1或5。