《高三物理知识点精选重点总结【优秀4篇】》
相信有很多同学到了高中会认为物理是理科,所以没必要死记硬背。其实这是错误的想法,高中物理知识点众多,光靠一个脑袋是记不全的,好记性不如烂笔头,要想学好物理,同学们还是要多做知识点的总结。下面是的小编为您带来的高三物理知识点精选重点总结【优秀4篇】,在大家参照的同时,也可以分享一下给您最好的朋友。
高三物理知识点总结 篇1
动量
1、动量和冲量
(1)动量:运动物体的质量和速度的乘积叫做动量,即p=mv.是矢量,方向与v的方向相同。两个动量相同必须是大小相等,方向一致。
(2)冲量:力和力的作用时间的乘积叫做该力的冲量,即I=Ft.冲量也是矢量,它的方向由力的方向决定。
2、动量定理:物体所受合外力的冲量等于它的动量的变化。表达式:Ft=p′-p或Ft=mv′-mv
(1)上述公式是一矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向。
(2)公式中的F是研究对象所受的包括重力在内的所有外力的合力。
(3)动量定理的研究对象可以是单个物体,也可以是物体系统。对物体系统,只需分析系统受的外力,不必考虑系统内力。系统内力的作用不改变整个系统的总动量。
(4)动量定理不仅适用于恒定的力,也适用于随时间变化的力。对于变力,动量定理中的力F应当理解为变力在作用时间内的平均值。
3、动量守恒定律:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。
表达式:m1v1+m2v2=m1v1′+m2v2′
(1)动量守恒定律成立的条件
①系统不受外力或系统所受外力的合力为零。
②系统所受的外力的合力虽不为零,但系统外力比内力小得多,如碰撞问题中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略不计。
③系统所受外力的合力虽不为零,但在某个方向上的分量为零,则在该方向上系统的总动量的分量保持不变。
(2)动量守恒的速度具有“四性”:①矢量性;②瞬时性;③相对性;④普适性。
4、爆炸与碰撞
(1)爆炸、碰撞类问题的共同特点是物体间的相互作用突然发生,作用时间很短,作用力很大,且远大于系统受的外力,故可用动量守恒定律来处理。
(2)在爆炸过程中,有其他形式的能转化为动能,系统的动能爆炸后会增加,在碰撞过程中,系统的总动能不可能增加,一般有所减少而转化为内能。
(3)由于爆炸、碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程简化处理。即作用后还从作用前瞬间的位置以新的动量开始运动。
5、反冲现象:反冲现象是指在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化的现象。喷气式飞机、火箭等都是利用反冲运动的实例。显然,在反冲现象里,系统的动量是守恒的。
高三物理知识点总结 篇2
力学的基本规律之:匀变速直线运动的基本规律(12个方程);
三力共点平衡的特点;
牛顿运动定律(牛顿第一、第二、第三定律);
力学的基本规律之:万有引力定律;
天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);
力学的基本规律之:动量定理与动能定理(力与物体速度变化的关系—冲量与动量变化的关系—功与能量变化的关系);
动量守恒定律(四类守恒条件、方程、应用过程);
功能基本关系(功是能量转化的量度)
力学的基本规律之:重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);
功能原理(非重力做功与物体机械能变化之间的关系);
力学的基本规律之:机械能守恒定律(守恒条件、方程、应用步骤);
简谐运动的基本规律(两个理想化模型一次全振动四个过程五个物理量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;
简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用。
高三物理知识点总结 篇3
一、三种产生电荷的方式:
1、摩擦起电:
(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;
(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;
(3)实质:电子从一物体转移到另一物体;
2、接触起电:
(1)实质:电荷从一物体移到另一物体;
(2)两个完全相同的物体相互接触后电荷平分;
(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和;
3、感应起电:把电荷移近不带电的导体,可以使导体带电;
(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;
(2)实质:使导体的电荷从一部分移到另一部分;
(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷;
4、电荷的基本性质:能吸引轻小物体;
二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。
三、元电荷:一个电子所带的电荷叫元电荷,用e表示。
1、e=1.6×10-19c;
2、一个质子所带电荷亦等于元电荷;
3、任何带电物体所带电荷都是元电荷的整数倍;
四、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力,
1、计算公式:F=kQ1Q2/r2(k=9.0×109N.m2/kg2)
2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)
3、库仑力不是万有引力;
五、电场:电场是使点电荷之间产生静电力的一种物质。
1、只要有电荷存在,在电荷周围就一定存在电场;
2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质
六、电场强度:放入电场中某点的电荷所受电场力F跟它的电荷量Q的比值叫该点的电场强度;
1、定义式:E=F/q;E是电场强度;F是电场力;q是试探电荷;
2、电场强度是矢量,电场中某一点的场强方向就是放在该点的正电荷所受电场力的方向(与负电荷所受电场力的方向相反)
3、该公式适用于一切电场;4、点电荷的电场强度公式:E=kQ/r2
七、电场的叠加:在空间若有几个点电荷同时存在,则空间某点的电场强度,为这几个点电荷在该点的电场强度的矢量和;解题方法:分别作出表示这几个点电荷在该点场强的有向线段,用平行四边形定则求出合场强;
八、电场线:电场线是人们为了形象的描述电场特性而人为假设的线。
1、电场线不是客观存在的线;
2、电场线的形状:电场线起于正电荷终于负电荷;G:用锯木屑观测电场线。DAT
(1)只有一个正电荷:电场线起于正电荷终于无穷远;
(2)只有一个负电荷:起于无穷远,终于负电荷;
(3)既有正电荷又有负电荷:起于正电荷终于负电荷;
3、电场线的作用:
1、表示电场的强弱:电场线密则电场强(电场强度大);电场线疏则电场弱电场强度小);
2、表示电场强度的方向:电场线上某点的切线方向就是该点的场强方向;
4、电场线的特点:
1、电场线不是封闭曲线;2、同一电场中的电场线不向交;
九、匀强电场:电场强度的大小、方向处处相同的电场;匀强电场的电场线平行、且分布均匀;
1、匀强电场的电场线是一簇等间距的平行线;2、平行板电容器间的电是匀强电场;场
十、电势差:电荷在电场中由一点移到另一点时,电场力所作的功WAB与电荷量q的比值叫电势差,又名电压。
1、定义式:UAB=WAB/q;2、电场力作的功与路径无关;
3、电势差又命电压,国际单位是伏特;
十一、电场中某点的电势,等于单位正电荷由该点移到参考点(零势点)时电场力作的功;
1、电势具有相对性,和零势面的选择有关;2、电势是标量,单位是伏特V;
3、电势差和电势间的关系:UAB=φA-φB;4、电势沿电场线的方向降低;
时,电场力要作功,则两点电势差不为零,就不是等势面;
4、相同电荷在同一等势面的任意位置,电势能相同;
原因:电荷从一电移到另一点时,电场力不作功,所以电势能不变;
5、电场线总是由电势高的地方指向电势低的地方;
6、等势面的画法:相另等势面间的距离相等;
十二、电场强度和电势差间的关系:在匀强电场中,沿场强方向的两点间的电势差等于场强与这两点的距离的乘积。
1、数学表达式:U=Ed;
2、该公式的使适用条件是,仅仅适用于匀强电场;
3、d是两等势面间的垂直距离;
十三、电容器:储存电荷(电场能)的装置。
1、结构:由两个彼此绝缘的金属导体组成;
2、最常见的电容器:平行板电容器;
十四、电容:电容器所带电荷量Q与两电容器量极板间电势差U的比值;用“C”来表示。
1、定义式:C=Q/U;
2、电容是表示电容器储存电荷本领强弱的物理量;
3、国际单位:法拉简称:法,用F表示
4、电容器的电容是电容器的属性,与Q、U无关;
十五、平行板电容器的决定式:C=εs/4πkd;(其中d为两极板间的垂直距离,又称板间距;k是静电力常数,k=9.0×109N.m2/c2;ε是电介质的介电常数,空气的介电常数最小;s表示两极板间的正对面积;)
1、电容器的两极板与电源相连时,两板间的电势差不变,等于电源的电压;
2、当电容器未与电路相连通时电容器两板所带电荷量不变;
十六、带电粒子的加速:
1、条件:带电粒子运动方向和场强方向垂直,忽略重力;
2、原理:动能定理:电场力做的功等于动能的变化:W=Uq=1/2mvt2-1/2mv02;
3、推论:当初速度为零时,Uq=1/2mvt2;
4、使带电粒子速度变大的电场又名加速电场;
高三物理知识点总结 篇4
(1)极性分子之间
极性分子的正负电荷的重心不重合,分子的一端带正电荷,另一端带负电荷。当极性分子相互接近时,由于同极相斥,异极相吸,使分子在空间定向排列,相互吸引而更加接近,当接近到一定程度时,排斥力同吸引力达到相对平衡。极性分子之间按异极相邻的状态取向。
(2)极性分子与非极性分子之间
非极性分子的正负电荷重心是重合的,当非极性分子与极性分子相互接近时,由于极性分子电场的影响,使非极性分子的电子云发生“变形”,从而使原来的非极性分子产生极性。这样,非极性分子与极性分子之间也就产生了相互作用力。极性分子对非极性分子有诱导作用。
(3)非极性分子之间
非极性分子间不可能产生上述两种作用力,那又是怎样产生作用力的呢?
我们说非极性分子的正负电荷重心重合是从整体上讲的。但由于核外电子是绕核高速运动的,原子核也在不断振动之中,原子核外的电子对原子核的相对位置会经常出现瞬间的不对称,正负电荷重心经常出现瞬间的不重合,也就是说非极性分子经常产生瞬时极性,从而使非极性分子间也产生了相互吸引力。
从上述的分析可以看出,无论什么分子之间都存在着相互吸引力,即范德华力。范德华力从本质上看,是一种电性吸引力。
高三物理知识点总结4
1、电压瞬时值e=Emsinωt电流瞬时值i=Imsinωt;(ω=2πf)
2、电动势峰值Em=nBSω=2BLv电流峰值(纯电阻电路中)Im=Em/R总
3、正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2;I=Im/(2)1/2
4、理想变压器原副线圈中的电压与电流及功率关系
U1/U2=n1/n2;I1/I2=n2/n2;P入=P出
5、在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失:P损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;
6、公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);
S:线圈的面积(m2);U:(输出)电压(V);I:电流强度(A);P:功率(W)。
注:
(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;
(2)发电机中,线圈在中性面位置磁通量,感应电动势为零,过中性面电流方向就改变;
(3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;
(4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;