《六年级上册数学重点知识点归纳整理优秀4篇》
数学,是研究数量、结构、变化、空间以及信息等概念的一门学科。而知识点在教育实践中,是指对某一个知识的泛称。那么,都有哪些知识点呢?学而不思则罔,思而不学则殆,以下是勤劳的小编帮大家整编的六年级上册数学重点知识点归纳整理优秀4篇,欢迎参考阅读,希望可以帮助到有需要的朋友。
六年级上册数学重点知识点归纳整理 篇1
1. 位置的表示方法: A(列,行)如:A(3,4)表示A点在第三列第四行。
一般先看横的数字,再看竖的数字,注意中间是逗号
2.分数乘法的意义:一个数×分数
分数×一个数
3.乘积是1的两个数互为倒数 1的倒数是1 0没有倒数
4.除以一个不等于0的数,等于乘这个数的倒数
5.两个数相除又叫做两个数的比。比值通常用分数表示,也可以用分数或整数
6.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变
7.圆的周长与它的直径的比值叫做圆周率,用兀来表示,兀≈3.14
8.有关圆的公式:
C= 兀d = 2兀r S =兀r 2
d=C÷兀 d=2 r r = d÷2 r = C÷兀÷2
圆环的面积S = 兀 R 2-兀 r 2
9.原价×折扣=现价 营业额×税率=应纳税额 本金×利率×时间=利息
10.条形统计图:可以清楚的看出数据的多少
折线统计图:可以清楚的看出数据的增减变化趋势
扇形统计图:可以清楚的看出各部分同总数之间的关系
数学六年级学习方法
首先:课前复习。就是上课前花两三分钟把书本本节课要学的内容看一遍。仅仅是看一遍,过一遍。这样上课老师讲自己不但可以跟上老师节奏还可以再次巩固。其余不要干其他多余的事。
其次:上课时候一定要专心听讲,如果觉得老师这里讲得都懂了的话可以自己翻书看后面的内容。做习题的时候一定要一道一道往过做,不要越题做。因为对于课本来说这些都是基础,只有基础完全掌握后才能做难题。上课过程中第一次接触到的知识点概念等,一定一定要当堂背过。不然以后很难背过,不要妄想考前抱佛教再背
另外要把笔记记准确,知道自己需要记什么不需要记什么,憋一个劲地往书上搬。字不要求整齐,自己能看懂就行。课本资料书上有例题,多看多记方法。先看课本基础,在看资料书上着重的`。例题的方法一定一定要理解,不要去背!接着下课再看笔记,只是略微巩固记住。
数学六年级学习技巧
养成良好的课前和课后学习习惯:在当前高中数学学习中,培养正确的学习习惯是一项重要的学习技能。虽然有一种刻板印象的猜疑,但在高中数学学习真的是反复尝试和错误的。学生们不得不预习课本。我准备的数学教科书不是简单的阅读,而是一个例子,至少十分钟的思考。在使用前不能通过学习知识解决问题的情况下,可以在教学内容中找到答案,然后在教材中考察问题的解决过程,掌握解决问题的思路。同时,在课堂上安排笔记也是必要的。在高中数学研究中,建议采用两种形式的笔记,一种是课堂速记,另一种是课后笔记。这不仅提高了课堂记忆的吸收能力,而且有助于对笔记内容的查询。
六年级上册数学重点知识点归纳整理 篇2
一、百分数的意义:
表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。
注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。
1、百分数和分数的区别和联系:
(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。
注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。
2、小数、分数、百分数之间的互化
(1)百分数化小数:小数点向左移动两位,去掉“%”。
(2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数化分数:把小数成分母是10、100、1000等的分数再化简。
(6)分数化小数:分子除以分母。
二、百分数应用题:
1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。
2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几:(甲-乙)÷乙。
求乙比甲少百分之几:(甲-乙)÷甲。
3、求一个数的百分之几是多少。一个数(单位“1”)×百分率
4、已知一个数的百分之几是多少,求这个数。
部分量÷百分率=一个数(单位“1”)。
7、百分数应用题型分类
(1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几。
(2)求甲比乙多百分之几——(甲-乙)÷乙×100%。
(3)求甲比乙少百分之几——(乙-甲)÷乙×100%。
第七单元 扇形统计图的意义
1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
2、常用统计图的优点:
(1)条形统计图直观显示每个数量的多少。
(2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。
(3)扇形统计图直观显示部分和总量的关系。
第八单元 数学广角--数与形
2+4+6+8+10+12+14+16+18+20=(110)
规律:从2开始的n个连续偶数的和等于n×(n+1)。所以:10×(10+1)=10×11=110。
从1开始的连续奇数的和正好是这串数个数的平方。
六年级上册数学重点知识点归纳整理 篇3
1、分数除法的意义
3/10÷1/10表示:已知两个因数的积是3/10,与其中一个因数是1/10,求另一个因数是多少。
2、分数除法的计算方法
除以一个不等于0的数,等于乘这个数的倒数。
3、被除数与商的大小关系
当除数小于1时,商就大于被除数。(0除外)
当除数大于1时,商就小于被除数。(0除外)
4、分数四则混合运算的运算顺序
(1) 只有“+、-”或只有“×、÷”,从左往右计算。
(2) 有“+、-”,也有“×、÷”,先乘除后加减。
(3) 有( )、[ ]的,先算( )里面的,再算[ ]里面的。
(一)已知一个数的几倍、几分之几是多少,求这个数。用除法计算。
1、已知一个数的几分之几是多少,求这个数的问题
例:甲数是15,甲数是乙数的3/5。乙数是多少? 15÷3/5=25
2、求一个数是另一个数的几倍、几分之几,用除法计算。
方法是:用“是”字前面的数÷“是”字后面的数。
例:1、15是5的几倍? 15÷5=3
2、20是25的几分之几? 20÷25=4/5
3、求一个数比另一个数多(或少)几分之几的解题方法是:
用相差量÷问题“比”字后面的量
例:(1)甲数是25,乙数是20。甲数比乙数多几分之几? (25-20)÷20=1/4
(2) 甲数是25,乙数是20。乙数比甲数少几分之几? (25-20)÷25=1/5
4、求单位“1”用除法计算。
具体量(对应量)÷对应分率=单位“1”
什么样的数量就对应什么样的分率。
什么样的分率就对应什么样的数量。
5、求平均数问题: 总量÷总份数=每份数
注意:求平均每什么就除以什么数。(求每天就除以天数;求每人就除以人数;求每千克就除以千克数;求每米就除以米数……)
6、已知A比B多(或少)几分之几,求B的解题方法:
A÷(1+/-几分之几)=B
7、已知单位“1”用乘法,求单位“1”用除法;
分率比多的就1+,比少的就1-。
8、工程问题
把工作总量看作“1”,工作效率就是1/工作时间。
工作时间=工作量 ÷ 工作效率
要做的工作量 由谁做就除以谁的工作效率
1人的效率=两人的效率和-另1人的效率
六年级上册数学重点知识点归纳整理 篇4
(一)分数乘法的意义和计算法则
1、分数乘整数的意义
2/11×3 表示: 求3个2/11是多少? 求2/11的3倍是多少?
2、分数乘整数的计算方法
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(能约分的要先约分再乘)
3、一个数乘分数的意义:就是求这个数的几分之几是多少。3/5×1/4表示:求3/5的1/4是多少。
4、分数乘分数的的计算方法
分数乘分数,用分子乘分子,分母乘分母。(能约分的要先约分再乘)
(二)求一个数的几分之几是多少的问题
1、找单位“1”的方法
(1)是谁的几分之几,就把谁看作单位“1”。
(2)一般把“比”字、“是”字、“占”字、“相当于”后面的量看作单位“1”。
注意: 找单位“1”在分率句里找,有分率的句子称为分率句。
分率不带单位,具体数量带有单位。
2、求一个数的几倍、几分之几是多少,用乘法计算。
15的3/5是多少? 15×3/5=9
3、已知单位“1”用乘法计算
单位“1”×分率=分率的对应量
注意:(1) 乘上什么样的分率就等于什么样的数量。
(2) 乘上谁占的分率就等于谁的数量。
(3) 是谁的几分之几,就用谁乘上几分之几。
4、已知A比B多(或少)几分之几,求A的解题方法
5、积与因数的大小关系
大于1的数,积大于A。
A(0除外)乘上
小于1的数,积小于A。