首页 > 教学教案 > 初中教案 > 初二教案 > 八年级数学教案优秀3篇正文

《八年级数学教案优秀3篇》

时间:

作为一名优秀的教育工作者,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。写教案需要注意哪些格式呢?这次帅气的小编为您整理了八年级数学教案优秀3篇,如果对您有一些参考与帮助,请分享给最好的朋友。

八年级数学教案 篇1

教学目标:

1、 理解运用平方差公式分解因式的方法。

2、 掌握提公因式法和平方差公式分解因式的综合运用。

3、 进一步培养学生综合、分析数学问题的能力。

教学重点:

运用平方差公式分解因式。

教学难点:

高次指数的转化,提公因式法,平方差公式的灵活运用。

教学案例:

我们数学组的观课议课主题:

1、关注学生的合作交流

2、如何使学困生能积极参与课堂交流。

在精心备课过程中,我设计了这样的自学提示:

1、整式乘法中的平方差公式是___,如何用语言描述?把上述公式反过来就得到_____,如何用语言描述?

2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么?

①-x2+y2 ②-x2-y2 ③4-9x2

④ (x+y)2-(x-y)2 ⑤ a4-b4

3、试总结运用平方差公式因式分解的条件是什么?

4、仿照例4的分析及旁白你能把x3y-xy因式分解吗?

5、试总结因式分解的步骤是什么?

师巡回指导,生自主探究后交流合作。

生交流热情很高,但把全部问题分析完已用了30分钟。

生展示自学成果。

生1: -x2+y2能用平方差公式分解,可分解为(y+x)(y-x)

生2: -x2+y2=-(x2-y2)=-(x+y)(x-y)

师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。

生3:4-9x2 也能用平方差公式分解,可分解为(2+9x)(2-9x)

生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。

生5: a4-b4可分解为(a2+b2)(a2-b2)

生6:不对,a2-b2 还能继续分解为a+b)(a-b)

师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。……

反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:

(1) 我在备课时,过高估计了学生的能力,问题2中的③、④、⑤ 多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:

下列多项式能用平方差公式因式分解吗?为什么?可能效果会更好。

(2) 教师备课时,要考虑学生的知识层次,能力水平,真正把学生放在第一位,要考虑学生的接受能力,安排习题要循序渐进,切莫过于心急,过分追求课堂容量、习题类型全等等,例如在问题2的设计时可写一些简单的,像④、⑤ 可到练习时再出现,发现问题后再强调、归纳,效果也可能会更好。

我及时调整了自学提示的内容,在另一个班也上了这节课。果然,学生的讨论有了重点,很快(大约10分钟)便合作得出了结论,课堂气氛非常活跃,练习量大,准确率高,但随之我又发现我在处理课后练习时有点不能应对自如。例如:师:下面我们把课后练习做一下,话音刚落,大家纷纷拿着本到我面前批改。师:都完了?生:全完了。我很兴奋。来:“我们再做几题试试。”生又开始紧张地练习……下课后,无意间发现竟还有好几个同学课后题没做。原因是预习时不会,上课又没时间,还有几位同学练习题竟然有误,也没改正,原因是上课慌着展示自己,没顾上改……。看来,以后上课不能单听学生的齐答,要发挥组长的职责,注重过关落实。给学生一点机动时间,让学习有困难的学生有机会释疑,练习不在于多,要注意融会贯通,会举一反三。

确实,“学海无涯,教海无边”。我们备课再认真,预设再周全,面对不同的学生,不同的学情,仍然会产生新的问题,“没有最好,只有更好!”我会一直探索、努力,不断完善教学设计,更新教育观念,直到永远……

八年级数学教案 篇2

学习目标

1、在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移、轴对称、伸长、压缩)之间的关系并能找出变化规律。

2、由坐标的变化探索新旧图形之间的变化。

重点

1、 作某一图形关于对称轴的对称图形,并能写出所得图形相应各点的坐标。

2、 根据轴对称图形的特点,已知轴一边的图形或坐标确定另一边的图形或坐标。

难点

体会极坐标和直角坐标思想,并能解决一些简单的问题

学习过程(导入、探究新知、即时练习、小结、达标检测、作业)

第一课时

学习过程:

一、旧知回顾:

1、平面直角坐标系定义:在平面内,两条____________且有公共_________的数轴组成平面直角坐标系。

2、坐标平面内点的坐标的。表示方法____________。

3、各象限点的坐标的特征:

二、新知检索:

1、在方格纸上描出下列各点(0,0),(5,4),(3,0),(5,1),(5,-1),

(3,0),(4,-2), (0,0)并用线段依次连接,观察形成了什么图形

三、典例分析

例1、

(1) 将鱼的顶点的纵坐标保持不变,横坐标分别加5画出图形,分析所得图形与原来图形相比有什么变化?如果纵坐标保持不变,横坐标分别减2呢?

(2)将鱼的顶点的横坐标保持不变,纵坐标分别加3画出图形,分析所得图形与原来图形相比有什么变化?如果横坐标保持不变,纵坐标减2呢?

例2、(1)将鱼的顶点的纵坐标保持不变,横坐标分别变为原来的2倍画出图形,分析所得图形与原来图形相比有什么变化?

(2)将鱼的顶点的横坐标保持不变,纵坐标分别变为原来的1/2画出图形,分析所得图形与原来图形相比有什么变化?

四、题组训练

1、在平面直角坐标系中,将坐标为(0,0),(2,4),(2,0),(4,4)的点用线段依次连接起来形成一个图案。

(1)这四个点的纵坐标保持不变,横坐标变成原来的1/2,将所得的四个点用线段依次连接起来,所得图案与原来图案相比有什么变化?

(2)纵、横分别加3呢?

(3)纵、横分别变成原来的2倍呢?

归纳:图形坐标变化规律

1、 平移规律:2、图形伸长与压缩:

第二课时

一、旧知回顾:

1、轴对称图形定义:如果一个图形沿着 对折后两部分完全重合,这样的图形叫做轴对称图形。

中心对称图形定义:在同一平面内,如果把一个图形绕某一点旋转 ,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形

二、新知检索:

1、如图,左边的鱼与右边的鱼关于y轴对称。

1、左边的鱼能由右边的鱼通过平移、压缩或拉伸而得到吗?

2、各个对应顶点的坐标有怎样的关系?

3、如果将图中右边的鱼沿x轴正方向平移1个单位长度,为保持整个图形关于y轴对称,那么左边的鱼各个顶点的坐标将发生怎样的变化?

三、典例分析,如图所示,

1、右图的鱼是通过什么样的变换得到 左图的鱼的。

2、如果将右边的鱼的横坐标保持不变,纵坐标分别变为原来的1倍,画出图形,得到的鱼与原来的鱼有什么样的位置关系。

3、如果将右边的鱼的纵、横坐标都分别变为原来的1倍,得到的鱼与原来的鱼有什么样的位置关系

四、题组练习

1、将坐标作如下变化时,图形将怎样变化?

① (x,y)(x,y+4)② (x,y) (x,y-2)③ (x,y) (1/2x , y)

④ (x,y) (3x , y)⑤ (x,y) (x ,1/2y)⑥ (x,y) (3x , 3y)

2、如图,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形状、大小完全一样的蝴蝶,并写出第二象限中蝴蝶各个顶点的坐标。

3、 如图,作字母M关于y轴的轴对称图形,并写出所得图形相应各端点的坐标。

4、 描出下图中枫叶图案关于x轴的轴对称图形的简图。

学习笔记

八年级数学教案 篇3

一、教学目标

1、使学生理解并掌握分式的概念,了解有理式的概念;

2、使学生能够求出分式有意义的条件;

3、通过类比分数研究分式的教学,培养学生运用类比转化的思想方法解决问题的能力;

4、通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辨证观点的再认识。

二、重点、难点、疑点及解决办法

1、教学重点和难点 明确分式的分母不为零。

2、疑点及解决办法 通过类比分数的意义,加强对分式意义的理解。

三、教学过程

【新课引入】

前面所研究的因式分解问题是把整式分解成若干个因式的积的问题,但若有如下问题:某同学分钟做了60个仰卧起坐,每分钟做多少个?可表示为,问,这是不是整式?请一位同学给它试命名,并说一说怎样想到的?(学生有过分数的经验,可猜想到分式)

【新课】

1、分式的定义

(1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:

用、表示两个整式,就可以表示成的形式。如果中含有字母,式子就叫做分式。其中叫做分式的分子,叫做分式的分母。

(2)由学生举几个分式的例子。

(3)学生小结分式的概念中应注意的问题。

①分母中含有字母。

②如同分数一样,分式的分母不能为零。

(4)问:何时分式的值为零?[以(2)中学生举出的分式为例进行讨论]

2、有理式的分类

请学生类比有理数的分类为有理式分类:

例1 当取何值时,下列分式有意义?

(1);

解:由分母得。

∴当时,原分式有意义。

(2);

解:由分母得。

∴当时,原分式有意义。

(3);

解:∵恒成立,

∴取一切实数时,原分式都有意义。

(4)。

解:由分母得。

∴当且时,原分式有意义。

思考:若把题目要求改为:“当取何值时下列分式无意义?”该怎样做?

例2 当取何值时,下列分式的值为零?

(1);

解:由分子得。

而当时,分母。

∴当时,原分式值为零。

小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零。

(2);

解:由分子得。

而当时,分母,分式无意义。

当时,分母。

∴当时,原分式值为零。

(3);

解:由分子得。

而当时,分母。

当时,分母。

∴当或时,原分式值都为零。

(4)。

解:由分子得。

而当时,,分式无意义。

∴没有使原分式的值为零的的值,即原分式值不可能为零。

(四)总结、扩展

1、分式与分数的区别。

2、分式何时有意义?

3、分式何时值为零?

(五)随堂练习

1、填空题:

(1)当时,分式的值为零

(2)当时,分式的值为零

(3)当时,分式的值为零

2、教材P55中1、2、3.

八、布置作业

教材P56中A组3、4;B组(1)、(2)、(3)。

九、板书设计

课题 例1

1、定义例2

2、有理式分类