《初中数学教案范文【优秀10篇】》
经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。这次漂亮的小编为您带来了初中数学教案范文【优秀10篇】,希望能够帮助到大家。
2022初中数学教案模板 篇1
教学目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯
重点难点:
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
教学过程:
一、试一试
1、设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,
2.x的值是否可以任意取?有限定范围吗?
3、我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,
对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。 对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 二、提出问题 某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件。该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并回答: 1、商品的利润与售价、进价以及销售量之间有什么关系? [利润=(售价-进价)×销售量] 2、如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元? [10-8=2(元),(10-8)×100=200(元)] 3、若每件商品降价x元,则每件商品的利润是多少元?一天可销 售约多少件商品? [(10-8-x);(100+100x)] 4.x的值是否可以任意取?如果不能任意取,请求出它的范围, [x的值不能任意取,其范围是0≤x≤2] 5、若设该商品每天的利润为y元,求y与x的函数关系式。 [y=(10-8-x) (100+100x)(0≤x≤2)] 将函数关系式y=x(20-2x)(0 y=-2x2+20x(0 三、观察;概括 1、教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答; (1)函数关系式(1)和(2)的自变量各有几个? (各有1个) (2)多项式-2x2+20和-100x2+100x+200分别是几次多项式? (分别是二次多项式) (3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的) (4)本章导图中的问题以及P1页的问题2有什么共同特点? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。 2、二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项。 四、课堂练习 1、(口答)下列函数中,哪些是二次函数? (1)y=5x+1 (2)y=4x2-1 (3)y=2x3-3x2 (4)y=5x4-3x+1 2.P3练习第1,2题。 五、小结 1、请叙述二次函数的定义。 2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。 六、作业:略 教学目标: 1、引导同学们领略数学隐藏在生活中的迷人之处; 2、培养同学们对数学的兴趣。 教学内容: 生活中的数学。 教学方法: 启发探索、小游戏 教具安排: 多媒体、剪纸、小剪刀三把 教学过程: 师:同学们,从小学到现在我们都在跟数学打交道,能说说大家对数学的感受吗? 学生讨论。 师:同学们,不管以前你们喜不喜欢数学,但老师要告诉大家,其实数学很有趣,它不仅出现在我们的课本,更隐藏在生活的每个角落,只要我们仔细探究,就会发现它在我们的周围闪着迷人的光,希望大家从今天开始,喜欢数学,与数学成为好朋友,好好领略好朋友带给我们的美的享受。事不宜迟,现在我们马上开始我们的数学探究之旅。首先,我们来玩个小游戏: 请大家拿出笔和纸,根据下面的步骤来操作,你会有惊人的发现。(PPT演示) [1]首先,随意挑一个数字(0、1、2、3、4、5、6、7) [2]把这个数字乘上2 [3]然后加上5 [4]再乘以50 [5]如果你今年的生日已经过了,把得到的数目加上1759;如果还没过,加1758 [6]最后一个步骤,用这个数目减去你出生的那一年(公元的) 师:发现了什么?第一个数字是不是你一开始选择的数字呢?那接下来的两个呢?如无意外,就是你的年龄了。是不是很有趣呢?至于为什么会这样课后大家仔细想想自然就明白啦,这就是数学的魅力所在了。接下来我们来尝试帮助格尼斯堡的居民解决下面的问题(PPT演示):格尼斯堡建造在普蕾尔河岸上。7座桥连接着两个岛和河岸: 居民们的一项普遍爱好是尝试在一次行走中跨过所有的7座桥而不重复经过任何一座桥。同学们,你们能帮助他们实现这个想法吗?拿出纸和笔设计的路线。 学生思考设计。 师:同学们行吗?事实上,著名数学家欧拉已经证明不能解决这个问题了,可是这是为什么呢?别急,我们继续看下去。 1944年的空袭,毁坏了大多数的旧桥,格尼斯堡在河上重新建了5座桥: 现在请同学们再尝试一下,在一次行走中跨过所有的5座桥而不重复经过任何一座桥。 学生思考。 师:同学们,这次行得通了吧?那么为什么呢?有没有同学可以说一下他的想法? 其实,我们的欧拉大师经过研究大量类似的网络,证明了这样的事实(PPT演示):要走完一条路线而其中每一段行程只许经过一次,只有当奇数结点的数目是0或2时才是有可能的,在其他情况下,如果不走回头路,就不能历遍整个网络。 他还发现:如果有两个奇结点,那么经过整个路线的形成必须从一个奇结点开始,到另一个奇结点结束。 师:我们来看一下是不是这样的?第一个图奇结点的个数为3,第二个图奇结点的个数减少到2个了,看来真的是这样的。 现在请同学们自己在练习本上解决这个问题:(PPT演示) 下面是一幅农场的大门的图。如果笔不离纸,又不重复经过任一条线,有没有可能画成它? 学生思考讨论。 师:我们看到它的奇结点个数为4,由欧拉的证明我们知道不能一笔画成。 那如果农场主将门的形状做成这样呢?(PPT演示) 学生尝试。 师:是不是可以啦,为什么呢? 生:奇结点个数为2。 师:这种不用走回头路而历遍整条线路的情况,不仅仅具有趣味性,在现实生活中具有很重要的实用性,比如,我们的邮递员和煤气抄表员,不走回头路意味着可以节省很多宝贵的时间。看来,数学并不像某些时候想的那样没什么用处了吧? 下面我们继续我们的奥秘之类吧。 今天我们班有同学生日吗?如果你生日,爸爸妈妈给你买了一个正方形的蛋糕,你要把它切成不同形状的平均大小的7块,怎么切?能行吗?尝试一下。 其实很简单,你只需要把正方形的周边(即周长)分成7个等长,定出蛋糕的中心,从周边划分等长的标记切向中电,(如图所示)即可。 为什么呢?这里我们用到三角形等高等底面积相等的性质。 吃完了蛋糕,我们来观赏一下百合花。(PPT演示): 一个乡村的池塘里种了美丽的百合花,百合花生长得很快,使它们覆盖的面积每天增加一倍。30天后,长满了整个池塘,那么池塘只被百合花覆盖一半时是多少天呢?同学们,你知道吗? 学生讨论。 师:答案是29天,多么神奇,是吧?潜意识里我们很难接受答案就是29天,只与30天差一天。但用数学我们很容易很清楚地知道是29天,奥秘就在“它们覆盖的面积每天增加一倍”这句话里面。你看,数学是多么聪慧、多么神奇的家伙! 重难点分析 本节的重点是的性质和判定定理。是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。 本节的难点是性质的灵活应用。由于是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。如果得到一个平行四边形是,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程中应给予足够重视。 教法建议 根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题: 1、的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。 2、在现实中的实例较多,在讲解的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识。 3、如果条件允许,教师在讲授这节内容前,可指导学生按照教材148页图4-33所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些。 4、在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳。 5、由于和的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明。 6、在性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。 一、教学目标 1.掌握概念,知道与平行四边形的关系。 2.掌握的性质。 3.通过运用知识解决具体问题,提高分析能力和观察能力。 4.通过教具的演示培养学生的学习兴趣。 5.根据平行四边形与矩形、的从属关系,通过画图向学生渗透集合思想。 6.通过性质的学习,体会的图形美。 二、教法设计 观察分析讨论相结合的方法 三、重点·难点·疑点及解决办法 1.教学重点:的性质定理。 2.教学难点:把的性质和直角三角形的知识综合应用。 3.疑点:与矩形的性质的区别。 四、课时安排 1课时 五、教具学具准备 教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具 六、师生互动活动设计 教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨 七、教学步骤 【复习提问】 1.什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么? 2.矩形中对角线与大边的夹角为,求小边所对的两条对角线的夹角。 3.矩形的一个角的平分线把较长的边分成、,求矩形的周长。 【引入新课】 我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,这时可将事先按课本中图4-38做成的一个短边也可以活动的教具进行演示,如图,改变平行四边形的边,使之一组邻进相等,引出概念。 【讲解新课】 1.定义:有一组邻边相等的平行四边形叫做。 讲解这个定义时,要抓住概念的本质,应突出两条: (1)强调是平行四边形。 (2)一组邻边相等。 2.的性质: 教师强调,既然是特殊的平行四边形,因此它就具有平行四边形的一切性质,此外由于它比平行四边形多了“一组邻边相等”的条件,和矩形类似,也比平行四边形增加了一些特殊性质。 下面研究的性质: 师:同学们根据的定义结合图形猜一下有什么性质(让学生们讨论,并引导学生分别从边、角、对角线三个方面分析)。 生:因为是有一组邻边相等的平行四边形,所以根据平行四边形对边相等的性质可以得到。 性质定理1:的四条边都相等。 由的四条边都相等,根据平行四边形对角线互相平分,可以得到 性质定理2:的对角线互相垂直并且每一条对角线平分一组对角。 引导学生完成定理的规范证明。 师:观察右图,被对角线分成的四个直角三角形有什么关系? 生:全等。 师:它们的底和高和两条对角线有什么关系? 生:分别是两条对角线的一半。 师:如果设的两条对角线分别为、,则的面积是什么? 生: 教师指出当不易求出对角线长时,就用平行四边形面积的一般计算方法计算面积。 例2已知:如右图,是△的角平分线,交于,交于。 求证:四边形是。 (引导学生用定义来判定。) 例3已知的边长为,,对角线,相交于点,如右图,求这个的对角线长和面积。 (1)按教材的方法求面积。 (2)还可以引导学生求出△一边上的高,即的高,然后用平行四边形的面积公式计算的面积。 【总结、扩展】 1.小结:(打出投影)(图4) (1)、平行四边形、四边形的从属关系: (2)性质:图5 ①具有平行四边形的所有性质。 ②特有性质:四条边相等;对角线互相垂直,且平分每一组对角。 八、布置作业 教材P158中6、7、8,P196中10 九、板书设计 标题 定义…… 性质例2…… 小结: 性质定理1:……例3…… …… 性质定理2:…… 十、随堂练习 教材P151中1、2、3 补充 1.的两条对角线长分别是3和4,则周长和面积分别是___________、___________。 2.周长为80,一对角线为20,则相邻两角的度数为___________、____________。 教学目标 1、使学生认识字母表示数的意义,了解字母表示数是数学的一大进步; 2、了解代数式的概念,使学生能说出一个代数式所表示的数量关系; 3、通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力; 4、通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。 教学建议 1、 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。 2、教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解: (1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性。 (2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式。如:2,m都是代数式。 xxx等都不是代数式。 3、教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。 如:说出代数式7(a-3)的意义。 分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。 4、书写代数式的注意事项: (1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面。 如3×a ,应写作3a 或写作3a ,a×b 应写作3.a 或写作ab 。带分数与字母相乘,应把带分数化成假分数,数字与数字相乘一般仍用“×”号。 (2)代数式中有除法运算时,一般按照分数的写法来写。 (3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来。 5、对本节例题的分析: 例1是用代数式表示几个比较简单的数量关系,这些小学都学过。比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍。 例2是说出一些比较简单的代数式的意义。因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已。 6、教法建议 (1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。 (2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。 (3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。 (4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。 (5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。 7、教学重点、难点: 重点:用字母表示数的意义 难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。 教学设计示例 课堂教学过程设计 一、从学生原有的认知结构提出问题 1、在小学我们曾学过几种运算律?都是什么?如可用字母表示它们? (通过启发、归纳最后师生共同得出用字母表示数的五种运算律) (1)加法交换律 a+b=b+a; (2)乘法交换律 a·b=b·a; (3)加法结合律 (a+b)+c=a+(b+c); (4)乘法结合律 (ab)c=a(bc); (5)乘法分配律 a(b+c)=ab+ac 指出: (1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”; (2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数 2、(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少? 3、若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗? 4、(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少? (用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米) 此时,教师应指出: (1)用字母表示数可以把数或数的关系,简明的表示出来; (2)在公式与中,用字母表示数也会给运算带来方便; (3)像上面出现的a,5,15÷3,4a,a+b,s/t 以及a2等等都叫代数式。那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容。 三、讲授新课 1、代数式 单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式。学习代数,首先要学习用代数式表示数量关系,明确代数上的意义。 2、举例说明 例1 填空: (1)每包书有12册,n包书有__________册; (2)温度由t℃下降到2℃后是_________℃; (3)棱长是a厘米的正方体的体积是_____立方厘米; (4)产量由m千克增长10%,就达到_______千克 (此例题用投影给出,学生口答完成) 解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m 例2 说出下列代数式的意义: 解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积; (5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方 说明: (1)本题应由教师示范来完成; (2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等 例3 用代数式表示: (1)m与n的和除以10的商; (2)m与5n的差的平方; (3)x的2倍与y的和; (4)ν的立方与t的3倍的积 分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面 四、课堂练习 1、填空:(投影) (1)n箱苹果重p千克,每箱重_____千克; (2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米; (3)底为a,高为h的三角形面积是______; (4)全校学生人数是x,其中女生占48%?则女生人数是____,男生人数是____ 2、说出下列代数式的意义:(投影) 3、用代数式表示:(投影) (1)x与y的和; (2)x的平方与y的立方的差; (3)a的60%与b的2倍的和; (4)a除以2的商与b除3的商的和。 五、师生共同小结 首先,提出如下问题: 1、本节课学习了哪些内容? 2、用字母表示数的意义是什么? 3、什么叫代数式? 教师在学生回答上述问题的基础上,指出: ①代数式实际上就是算式,字母像数字一样也可以进行运算; ②在代数式和运算结果中,如有单位时,要正确地使用括号。 六、作业 1、一个三角形的三条边的长分别的a,b,c,求这个三角形的周长 2、张强比王华大3岁,当张强a岁时,王华的年龄是多少? 3、飞机的速度是汽车的40倍,自行车的速度是汽车的1/3 ,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少? 4、a千克大米的售价是6元,1千克大米售多少元? 5、圆的半径是R厘米,它的面积是多少? 6、用代数式表示: (1)长为a,宽为b米的长方形的周长; (2)宽为b米,长是宽的2倍的长方形的周长; (3)长是a米,宽是长的1/3 的长方形的周长; (4)宽为b米,长比宽多2米的长方形的周长。 一、素质教育目标 (一)知识教学点 1、掌握的三要素,能正确画出。 2、能将已知数在上表示出来,能说出上已知点所表示的数。 (二)能力训练点 1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。 2、对学生渗透数形结合的思想方法。 (三)德育渗透点 使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点。 (四)美育渗透点 通过画,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。 二、学法引导 1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法。 2、学生学法:动手画,动脑概括的三要素,动手、动脑做练习。 三、重点、难点、疑点及解决办法 1、重点:正确掌握画法和用上的点表示有理数。 2、难点:有理数和上的点的对应关系。 四、课时安排 1课时 五、教具学具准备 电脑、投影仪、自制胶片。 六、师生互动活动设计 师生同步画,学生概括三要素,师出示投影,生动手动脑练习 七、教学步骤 (一)创设情境,引入新课 师:大家知识温度计的用途是什么? 生:温度计可以测量温度 (出示投影1) 三个温度计。其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度。 师:三个温度计所表示的温度是多少? 生:2℃,-5℃,0℃。 我们能否用类似温度计的图形表示有理数呢? 这种表示数的图形就是今天我们要学的内容—(板书课题)。 【教法说明】从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容—。再从温度计这个实物形象抽象出来研究。既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的意识。 (二)探索新知,讲授新课 1、的画法 与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下: 第一步:画直线定原点原点表示0(相当于温度计上的0℃)。 第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向。(相当于温度计上℃以上为正,0℃以下为负)。 第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度)。 【教法说明】教师边讲解边示范,学生跟着一起画图。培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法。 让学生观察画好的直线,思考以下问题: (出示投影1) (1)原点表示什么数? (2)原点右方表示什么数?原点左方表示什么数? (3)表示+2的点在什么位置?表示-1的点在什么位置? (4)原点向右0.5个单位长度的A点表示什么数?原点向左个单位长度的B点表示什么数? 根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出的定义。 学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答。大家思考准备更正或补充。 把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。 一、教材内容分析 本节课是数学人教版七年级上册第三章第二节第二小节的内容。这是一节“概念加例题型”课,此种课型中的学习内容一部分是概念,一部分是运用前面的概念解决实际问题的例题。本节课主要内容是利用移项解一元一次方程。是学生学习解一元一次方程的基础,这一部分内容在方程中占有很重要的地位,是解方程、解一元一次不等式、解一元二次不等式的重要基础。这类课一般采用“导学导教,当堂训练”的方式进行,教师指导学生学习的重点一般不放在概念上,要特别留意学生运用概念解题或做与例题类似的习题时,对概念的理解是否到位。 二、教学目标: 1、知识与技能: (1)找相等关系列一元一次方程; (2)用移项解一元一次方程。 (3)掌握移项变号的基本原则 2、过程与方法:经历运用方程解决实际问题的过程,发展抽象、概括、分析问题和解决问题的能力,认识用方程解决实际问题的关键是建立相等关系。 3、情感、态度:通过具体情境引入新问题,在移项法则探究的过程中,培养学生合作意识,渗透化归的思想。 三、学情分析 针对七年级学生学习热情高,但观察、分析、概括能力较弱的特点,本节从实际问题入手,让学生通过自己思考、动手,激发学生的求知欲,提高学生学习的兴趣与积极性。在课堂教学中,学生主要采取自学、讨论、思考、合作交流的学习方式,使学生真正成为课堂的主人,逐步培养学生观察、概括、归纳的能力。 四、教学重点: 利用移项解一元一次方程。 五、教学难点: 移项法则的探究过程。 六、教学过程: (一)情景引入 引例:请同学们思考这样一个有趣的问题,我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨分别是( ) A.3个老头,4个梨 B.4个老头,3个梨 C.5个老头,6个梨 D.7个老头,8个梨 设计意图:大部分同学会用算术法(答案代入法)来解答的,而这类问题我们如何用方程来解答呢?激起学生求知的欲望,巧妙过渡,揭示课题。板书课题:解一元一次方程——移项 (二)出示学习目标 1、理解移项法,明确移项法的依据,会解形如ax+b=cx+d类型 的一元一次方程。 2、会建立方程解决简单的实际问题。 设计意图:这两个目标的达成,也验证了本节课学生自学的效果,这也是本节课的教学重难点。 (三)导教导学 1、出示自学指导 自学教材问题2到例3的内容,思考以下问题: (1)问题2中这批书的总数有哪几种表示法?它们之间有什么关系?本题可作为列方程的依据的等量关系是什么? (2)什么是移项?移项的依据是什么?移项时应该注意什么问题?解形如“ax+b=cx+d”类型的方程中移项起了什么作用?自学例3后请归纳解这类一元一次方程的步骤(8分钟后,比谁能仿照问题2和例3的格式正确解答问题) 2、学生自学 学生根据自学提纲进行独立学习,教师巡视,对自学速度慢的、自学能力差的、注意力不够集中的学生给以暗示和帮扶,有利于自学后的成果展示。 3、交流展示(小组合作展示) (合作交流一)教材问题2中这批书的总数有哪几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢? 问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本。这个班有多少学生? 1)设未知数:设这个班有X名学生,根据两种不同分法这批书的总数就有两种表示方法,即这批书共有(3 X+20)本或(4X-25)本。 2)找相等关系:这批书的总数是一个定值,表示同一个量的两个不同的式子相等。(板书) 3)根据等量关系列方程: 3x+20 = 4x-25(板书) 【总结提升】解决“分配问题”应用题的列方程的基本要点: A.找出能贯穿应用题始终的一个不变的量。 B.用两个不同的式子去表示这个量。 C.由表示这个不变的量的两个式子相等列出方程。 设计意图:因为在自学提纲的引领下,每个小组自主学习的效果不同,反馈的意见不同,所以在展示中首先要展示学生对课本例题的理解思路。采取主动自愿的方式,一个小组主讲,其它小组补充。 (变式训练1)某学校组织学生共同种一批树,如果每人种5棵,则剩下3棵;如果每人种6棵,则缺3棵树苗,求参与种树的人数 (只设列即可) (变式训练2)我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨各多少? 设计意图:检查提问学生对“分配问题”应用题掌握的情况,学生回答后教师板书所列方程为后面教学做好铺垫。学生会带着“如何解这类方程?”的好奇心过渡到下一个环节的学习。 (合作交流二)什么是移项?移项的依据是什么?移项时应该注意什么问题?解形如“ax+b=cx+d”类型的方程中移项起了什么作用?自学例3后请归纳解这类一元一次方程的步骤。 (板书 )把等式一边的某项改变符号后,从等式的一边移到另一边,这种变形叫做移项。 《解一元一次方程——移项》教学设计(魏玉英) 师:为什么等式(方程)可以这样变形?依据什么? (出示)依据等式的基本性质 即:等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式。 师:解一元一次方程中“移项”起了什么作用? (出示) 通过移项,使等号左边仅含未知数的项,等号右边仅含常数的项,使方程更接近x=a的形式。(与课题对照渗透转化思想) (基础训练)抢答:判断下列移项是否正确,如有错误,请修改 《解一元一次方程——移项》教学设计(魏玉英) 设计理念:让各个小组凭着势力去抢答。这五个习题重点考察学生对移项的掌握是本节课的重难点,习题分层设计且成梯度分布。 【归纳板书】 解“ax+b=cx+d”型的一元一次方程的步骤: (1) 移项, (2) 合并同类项, (3) 系数化为1 (综合训练) 解下列方程(任选两题) 设计理念:第(2)、(3)两题未知数系数是相同类型的,所以让学生任选一题即可。通过综合训练能让学生更进一步巩固用移项和合并同类项去解方程了。 (中考试练)若x=2是关于x的方程2x+3m-1=0的解,则m的值为 设计理念:通过本题的训练让学生明确中考在本节的考点,同时激励学生在数学知识的学习中要抓住知识的'核心和重点。 (四)我总结、我提高: 通过本节课的学习我收获了。 设计意图:通过小组之间互相谈收获的方式进行课堂小结,让学生相互检查本节课的学习效果。可以引导学生从本节课获得的知识、解题的思想方法、学习的技巧等方面交流意见。 (五)当堂检测(50分) 1、下列方程变形正确的是( ) A.由-2x=6, 得x=3 B.由-3=x+2, 得x=-3-2 C.由-7x+3=x-3, 得(-7+1)x=-3-3 D.由5x=2x+3, 得x=-1 2、一批游客乘汽车去观看“上海世博会”。如果每辆汽车乘48人,那么还多4人;如果每辆汽车乘50人,那么还有6个空位,求汽车和游客各有多少?(只设出未知数和列出方程即可) 3、(20分)已知x=1是关于x的方程3m+8x=m+x的解,求m的值。 (师生活动)学生独立答题,教师巡回检查,对先答完的学生进行及时批改,并把得满分的学生作为小老师对后解答完的学生的检测进行评定,最后老师进行小结。 (六)实践活动 请每一位同学用自己的年龄编一 道“ax+b=cx+d”型的方程应用题,并解答。先在组内交流,选出组内最有创意的一个记在题卡上,自习在全班进行展示 。 设计意图: 让学生课后完成,让学生深深体会到数学来源于生活而又服务于生活,体现了数学知识与实际相结合。 教学目标: 1、理解切线的判定定理,并学会运用。 2、知道判定切线常用的方法有两种,初步掌握方法的选择。 教学重点: 切线的判定定理和切线判定的方法。 教学难点: 切线判定定理中所阐述的圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视一。 教学过程: 一、复习提问 【教师】 问题1.怎样过直线l上一点P作已知直线的垂线? 问题2.直线和圆有几种位置关系? 问题3.如何判定直线l是⊙O的切线? 启发: (1)直线l和⊙O的公共点有几个? (2)圆心O到直线L的距离与半径的数量关系 如何? 学生答完后,教师强调(2)是判定直线 l是⊙O的切线的常用方法,即: 定理:圆心O到直线l的距离OA 等于圆的半 (如图1,投影显示) 再启发:若把距离OA理解为 OA⊥l,OA=r;把点A理解为半径在圆上的端点 ,请同学们试将上面定理用新的理解改写成新的命题,此命题就 是这节课要学的“切线的判定定理”(板书课题) 二、引入新课内容 【学生】命题:经过半径的在圆上的端点且垂直于半 径的直线是圆的切线。 证明定理:启发学生分清命题的题设和结论,写出已 知、求证,分析证明思路,阅读课本P60。 定理:经过半径外端并且垂直于这条半径的直线是圆的切线。 定理的证明:已知:直线l经过半径OA的外端点A,直线l⊥OA, 求证:直线l是⊙O的切线 证明:略 定理的符号语言:∵直线l⊥OA,直线l经过半径OA的外端A ∴直线l为⊙O的切线。 是非题: (1)垂直于圆的半径的直线一定是这个圆的切线。 ( ) (2)过圆的半径的外端的直线一定是这个圆的切线。 ( ) 三、例题讲解 例1、已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB。 求证:直线AB是⊙O的切线。 引导学生分析:由于AB过⊙O上的点C,所以连结OC,只要证明AB⊥OC即可。 证明:连结OC. ∵OA=OB,CA=CB, ∴AB⊥OC 又∵直线AB经过半径OC的外端C ∴直线AB是⊙O的切线。 练习1、如图,已知⊙O的半径为R,直线AB经过⊙O上的点A,并且AB=R,∠OBA=45°。求证:直线AB是⊙O的切线。 练习2、如图,已知AB为⊙O的直径,C为⊙O上一点,AD⊥CD于点D,AC平分∠BAD。 求证:CD是⊙O的切线。 例2、如图,已知AB是⊙O的直径,点D在AB的延长线上,且BD=OB,过点D作射线DE,使∠ADE=30°。 求证:DE是⊙O的切线。 思考题:在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,BD为半径作圆,问⊙D的切线有几条?是哪几条?为什么? 四、小结 1、切线的判定定理。 2、判定一条直线是圆的切线的方法: ①定义:直线和圆有唯一公共点。 ②数量关系:直线到圆心的距离等于该圆半径(即d = r)。[ ③切线的判定定理:经过半径外端且与这条半径垂直的直线是圆的切线。 3、证明一条直线是圆的切线的辅助线和证法规律。 凡是已知公共点(如:直线经过圆上的点;直线和圆有一个公共点;)往往是"连结"圆心和公共点,证明"垂直"(直线和半径);若不知公共点,则过圆心作一条线段垂直于直线,证明所作的线段等于半径。即已知公共点,“连半径,证垂直”;不知公共点,则“作垂直,证半径”。 五、布置作业:略 《切线的判定》教后体会 本课例《切线的判定》作为市考试院调研课型兼区级研讨课,我以“教师为引导,学生为主体”的二期课改的理念出发,通过学生自我活动得到数学结论作为教学重点,呈现学生真实的思维过程为教学宗旨,进行教学设计,目的在于让学生对知识有一个本质的、有效的理解。本节课切实反映了平时的教学情况,为前来调研和研讨的老师提供了真实的样本。反思本节课,有以下几个成功与不足之处: 成功之处: 一、 教材的二度设计顺应了学生的认知规律 这批学生习惯于单一知识点的学习,即得出一个知识点,必须由浅入深反复进行练习,巩固后方能加以提升与综合,否则就会混淆概念或定理的条件和结论,导致错误,久之便会失去学习数学的兴趣和信心。本教时课本上将切线判定定理和性质定理的导出作为第一课时,两个定理的运用和切线的两种常用的判定方法作为第二课时,学生往往会因第一时间得不到及时的巩固,对定理本质的东西不能很好地理解,在运用时抓不住关键,解题仅仅停留在模仿层次上,接受能力薄弱的学生更是因知识点多不知所措,在云里雾里。二度设计将切线的判定方法作为第一课时,切线的性质定理以及两个定理的综合运用作为第二课时,这样的设计即是对前面所学的“直线与圆相切的判定方法”的复习,又是对后面学习综合运用两个定理,合理选择两种方法判定切线作了铺垫,教学呈现了一个循序渐进、温过知新的过程。从学生的反馈情况判断,教学效果较为理想。 二、重视学生数感的培养呼应了课改的理念 数感类似与语感、乐感、美感,拥有了感觉,知识便会融会贯通,学习就会轻松。拥有数感,不仅会对数学知识反应灵敏,更会在生活中不知不觉运用数学思维方式解决实际问题。本节课中,两个例题由教师诱导,学生发现完成的,而三个习题则完全放手让学生去思考完成,不乏有不会做和做得复杂的学生,但在展示和交流中,撞击出思维的火花,难以忘怀。让学生尝试总结规律,也是对学生能力的培养,在本节课中,辅助线的规律是由学生得出,事实证明,学生有这样的理解、概括和表达能力。通过思考得出正确的结论,这个结论往往是刻骨铭心的,长此以往,对数和形的感觉会越来越好。 教学目标: (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。 (2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯 重点难点: 能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。 教学过程: 一、试一试 1、设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2。试将计算结果填写在下表的空格中, 2.x的值是否可以任意取?有限定范围吗? 3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式, 对于1,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。 对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。 对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式。 二、提出问题 某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件。该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并回答: 1.商品的利润与售价、进价以及销售量之间有什么关系? [利润=(售价-进价)×销售量] 2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元? [10-8=2(元),(10-8)×100=200(元)] 3.若每件商品降价x元,则每件商品的利润是多少元?一天可销 售约多少件商品? [(10-8-x);(100+100x)] 4.x的值是否可以任意取?如果不能任意取,请求出它的范围, [x的值不能任意取,其范围是0≤x≤2] 5.若设该商品每天的利润为y元,求y与x的函数关系式。 [y=(10-8-x) (100+100x)(0≤x≤2)] 将函数关系式y=x(20-2x)(0 <x <10=化为: y=-2x2+20x(0<x<10)……………………………(1) 将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为: y=-100x2+100x+20D (0≤x≤2)……………………(2) 三、观察;概括 1、教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答; (1)函数关系式(1)和(2)的自变量各有几个? (各有1个) (2)多项式-2x2+20和-100x2+100x+200分别是几次多项式? (分别是二次多项式) (3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的) (4)本章导图中的问题以及P1页的问题2有什么共同特点? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。 2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项。 四、课堂练习 1、(口答)下列函数中,哪些是二次函数? (1)y=5x+1 (2)y=4x2-1 (3)y=2x3-3x2 (4)y=5x4-3x+1 2.P3练习第1,2题。 五、小结 1.请叙述二次函数的定义。 2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。 六、作业:略 教学目标 1、了解公式的意义,使学生能用公式解决简单的实际问题; 2、初步培养学生观察、分析及概括的能力; 3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。 教学建议 一、教学重点、难点 重点:通过具体例子了解公式、应用公式。 难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。 二、重点、难点分析 人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。 三、知识结构 本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。 四、教法建议 1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。 2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。 3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。 知识技能目标 1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质; 2、利用反比例函数的图象解决有关问题。 过程性目标 1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质; 2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。 教学过程 一、创设情境 上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。 二、探究归纳 1、画出函数的图象。 分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。 解: 1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值: 2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。 3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。 上述图象,通常称为双曲线(hyperbola)。 提问这两条曲线会与x轴、y轴相交吗?为什么? 学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。 学生讨论、交流以下问题,并将讨论、交流的结果回答问题。 1、这个函数的图象在哪两个象限?和函数的图象有什么不同? 2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定? 3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律? 反比例函数有下列性质: (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少; (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。 注: 1、双曲线的两个分支与x轴和y轴没有交点; 2、双曲线的两个分支关于原点成中心对称。 以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义? 在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。 在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。 三、实践应用 例1若反比例函数的图象在第二、四象限,求m的值。 分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值。 解由题意,得解得。 例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx—k的图象经过的象限。 分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k<0,而一次函数y=kx—k中,k<0,可知,图象过二、四象限,又—k>0,所以直线与y轴的交点在x轴的上方。 解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k<0,所以一次函数y=kx—k的图象经过一、二、四象限。 例3已知反比例函数的图象过点(1,—2)。 (1)求这个函数的解析式,并画出图象; (2)若点A(—5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上? 分析(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象; (2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上。 解(1)设:反比例函数的解析式为:(k≠0)。 而反比例函数的图象过点(1,—2),即当x=1时,y=—2。 所以,k=—2。 即反比例函数的解析式为:。 (2)点A(—5,m)在反比例函数图象上,所以, 点A的坐标为。 点A关于x轴的对称点不在这个图象上; 点A关于y轴的对称点不在这个图象上; 点A关于原点的对称点在这个图象上; 例4已知函数为反比例函数。 (1)求m的值; (2)它的图象在第几象限内?在各象限内,y随x的增大如何变化? (3)当—3≤x≤时,求此函数的最大值和最小值。 解(1)由反比例函数的定义可知:解得,m=—2。 (2)因为—2<0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大。 (3)因为在第个象限内,y随x的增大而增大, 所以当x=时,y最大值=; 当x=—3时,y最小值=。 所以当—3≤x≤时,此函数的最大值为8,最小值为。 例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。 (1)写出用高表示长的函数关系式; (2)写出自变量x的取值范围; (3)画出函数的图象。 解(1)因为100=5xy,所以。 (2)x>0。 (3)图象如下: 说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。 四、交流反思 本节课学习了画反比例函数的图象和探讨了反比例函数的性质。 1、反比例函数的图象是双曲线(hyperbola)。 2、反比例函数有如下性质: (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少; (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。 五、检测反馈 1、在同一直角坐标系中画出下列函数的图象: (1);(2)。 2、已知y是x的反比例函数,且当x=3时,y=8,求: (1)y和x的函数关系式; (2)当时,y的值; (3)当x取何值时? 3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。 4、已知反比例函数经过点A(2,—m)和B(n,2n),求: (1)m和n的值; (2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0初中数学教案 篇2
初中数学教案 篇3
初中数学教案 篇4
初中数学教案 篇5
数学初中教案 篇6
数学初中教案 篇7
初中数学教案 篇8
数学初中教案 篇9
初中数学教案 篇10