首页 > 教学教案 > 教案大全 > 教学反思 > 《轴对称》课后的教学反思优秀6篇正文

《《轴对称》课后的教学反思优秀6篇》

时间:

所谓教学反思,是指教师对教育教学实践的再认识、再思考,并以此来总结经验教训,进一步提高教育教学水平。下面是的小编为您带来的《轴对称》课后的教学反思优秀6篇,在大家参照的同时,也可以分享一下给您最好的朋友。

《轴对称》课后的教学反思 篇1

讲过[轴对称]这节课,我有了新的熟悉,以下是我的几点收获:

第一、要明白课一开始复习对称轴是为了什么,也就是要明白你的每一节课上每一处的教学设计的意图。我想,在这里复习对称轴是为了唤起学生已有的轴对称图形对称轴的生活经验,同时为本节课进一步熟悉轴对称图形的对称轴,探究轴对称图形的对应点与对称轴之间的关系——轴对称图形上两个对称点到对称轴的方格数(距离)相等做铺垫吧!

第二、在我让孩子举例说明“生活中你见过哪些轴对称图形?”,学生说的都是生活中的物体,这时老师可以指出我们今天钻研的轴对称图形是平面图形,比如他们说黑板,课桌时,我可以适当的加以纠正“黑板,课桌的面是轴对称图形”!

第三、开始让学生指出图形的对称轴时,不能只让她们简单地用手比划一下,而是应该让他们在书上画一画,语言上的叙述也要在老师的引导下进一步规范严谨。比如说:中间那条线是对称轴,应该是“上下两条线的中点的连线所在的直线是对称轴”。

第四、在处理本节课的重点“在操作中探究轴对称图形的特征和性质时”,老师一定要放手,主动权给孩子,重点要让学生说,,然后他们才会画。先让学生找一对对称点,然后连接对称点,从图中发明两条虚线相交之处有直角符号,直角符号表示两条虚线垂直,这样才会清晰地发明对称点的连线与对称轴是垂直的关系。接着再数一数点A和其对称点到对称轴的距离,知道点A与其对称点到对称轴的距离都是3小格。这两个特征要给孩子时间去操作去发明去尝试,尝试才有发明,发明才有创新!耐下心来,总有学生会发明的!

然后再找其他对称点,去验证这两个特征,这个过程是需要时间的,没有经过具体的操作,学生是发明不了的。经过几次这样的操作活动,使学生明白轴对称图形上两个对称点到对称轴的方格数(距离)相等,加深学生对轴对称图形特征的熟悉。

第五、在发明对称轴两边的对称点到对称轴的距离相等之后,还要指出特殊的一类点:对称轴上的点,他们的对称点在哪?使学生明白点沿着对称轴折过去之后跟谁重合对称点就是谁,从而他们才明白这一类点的对称点就是它本身,也在对称轴上。

第六、要给学生强调画图的时候要用铅笔和直尺,而我在课堂上只强调了画图要用直尺,这一点以后一定改正。

第七、在讲本节课的第二个知识点补全轴对称图形的另一半时,最后要引导学生归纳总结这类画图题的方法步骤:

1 “找”,找出图形上的端点或者说要害点。

2 “定”,根据对称轴确定每一个端点的对称点。

3 “连”,依次连接这些对称点,得到轴对称图形的另一半。

小学阶段的画图,还是要给学生规范方法步骤的。

我课堂上的组织管理能力还有待提高,假如有学生提出质疑,要及时肯定赞扬,激励他的思量过程,思维习惯,久而久之,数学课堂上该有的思量味儿才会越来越浓!

《轴对称》课后的教学反思 篇2

本节内容是本章的重点,难点是几条性质的探索和掌握。

一、教学建议

1、本节主要是通过折叠的方式认识线段和角等图形的轴对称性,通过运动变换的方法去探索其相关性质。在探索的过程中可以直观观察和直观推理相结合,以逐步培养学生的逻辑推理能力。

2、在画图形的对称轴这一小节的教学中,注意画对称轴的过程也是让学生探索的过程,以学生动手操作为主,探索发现结论。用更多的轴对称图形让学生探索规律。

3、在画轴对称图形的教学中,教学中要注意给学生创设一个循序渐进的探索过程。利用几何画板软件可以很容易地画出任意几何图形的轴对称图形,有条件的学校,教学时可利用此软件给学生演示教材中图案设计的过程,或者让学生自己利用该软件作图,这样可以让学生感受轴对称变换的过程,以及提高教学效率。

二、教学反思

1、本节课在环节处理上过渡不够,衔接不好,对教材的分析不够,课堂组织的活动流于形式,不能充分利用起资源,整堂课在紧张急促中进行,留给学生的思考、说话、动手时间太少,主要是老师在讲,不能体现学生主体性,提问技巧欠缺,以致于课堂生成太少,课堂的闪光点没有出现。课堂能够注意学生是课堂的主人,创造对称图形让学生体验做数学的乐趣,但始终因为教师的引导不足,以致于学生在这个环节活动中不能创造剪出对称图形。其中的欣赏生活中对称图形的环节处理不恰当,应该放在课前导入部分,让学生在初步感知的基础上形成模糊对称概念,对后来的教学起到铺垫作用。

2、在教学设计中有两处学生设计作品,是不是无谓的重复,我认真的考虑过,但后来我认为两处都不可少。第一次是在验证发现中,这时的学生在帮助老师解惑,他本身没有形成充足的概念,所以设计应该是简约的。而第二次是在课堂的最后,要求发挥想象创造出一件作品,这时的学生已经形成概念,并对若干建筑物、生活用品进行了观赏,已经形成了丰富的表象,这时的学生思维已经处于活跃的状态,是课堂教学的延伸,这一环节在课堂中实现是不可能的了,这无疑将课堂教学延伸至课外,在认真准备的状态中,学生创造出来的东西,你会大吃一惊。你会叹服学生的创造力。

《轴对称》课后的教学反思 篇3

《轴对称图形》是人教版十一册第四单元的教学内容,为概念课。这一课时的教学内容是在学生学过基本几何图形的基础上进行教学的,这节课双基训练要求是

1、初步学会判断一个图形是否轴对称图形。

2、学会画一个轴对称图形的对称轴。

曾经何时,我们数学老师们都在思索一个问题:为什么学生老不爱学数学?上海市1998年的一份调查揭示:92%的学生不爱学数学。即使数学考试成绩很好的学生也不爱数学。我们曾经都把这归纳于数学学科是抽象的,知识是枯燥的。现在在新课程理念的昭示下,我们恍然大悟,我们过去苦苦追求的让所有学生都爱上数学原本根本就不可能的,因为我们让学生学习的教材内容,原本就没有建立在学生的生活经验基础之上,我们的数学学习内容根本就是为了培养数学家的东西。这就决定让学生喜爱数学只能是空中楼阁。记得荷兰的教育家拂雷登塔尔提出:“数学是现实的,学生要从现实生活中学习数学,再把学到的数学应用到现实中去。”新制定的数学课标对数学教学也提出了要求:数学学习的内容与形式必须建立在学生的生活经验之上。结合以上理论,也简要谈谈本人对数学课课改理念的粗浅理解,我觉得新理念下的课堂教学模式要做到:

1、让学生觉得课堂上他是快乐的。

2、让学生能够用自己喜欢的方式去探究、应用数学。

3、数学的学习不能仅仅着眼于追求单一的分数,应该追求一种更高一层次的对学生的发展有所作用的东西。所以,本节课我对教材做了一些偿试,在把握教材双基要求的同时,教学设计上力求体现“生活数学”、“美与快乐数学”这二条基本理念,力求让学生在数学学习过程中产生“数学是美的、数学是快乐的、数学是有用的、数学在生活中”的情感体验,力求让学生用快乐的方式去做数学,用快乐的方式去用数学。

根据以上设计理念,本节课我设计了:猜——折——画——摆——展五个环节。对于概念的揭示摒弃了过去概念课繁琐的推理过程,改之为游戏、猜想、验证的学习过程。对概念的应用,也改变已往简单的作业本练习方式,改之为轻松活泼的活动。这样的设计,目的为了使学生在轻松愉快的气氛中、在活泼的动手实践中发展思维,丰富眼界,培养创新意识,提高实践能力,最重要的是让学生充分地感受到数学的美与数学的快乐,让学生不再惧怕数学,不再把数学学习当成是老师要他学的东西。

本节课中,第一个环节中的游戏的设计,在为创设情境的同时,也让学生在游戏中唤醒生活记忆,初步感知数学概念的生活原形。为猜测轴对称图形的特征搭路铺桥。第二个环节与第三个环节的折与画,用手指比划,既是对概念的进一步感知,也是概念的初步应用。对新知起巩固作用。练习中用学生喜爱的“爱心”置换课本练习题毫无意义的图形以提高兴趣。“爱心”后面“抽象的眼睛”的对称轴学生不容易画,是让学生明白画对称图形的对称轴乃至思考问题要着眼于整体,同时也是为了下面摆轴对称图形来点启发。第四个环节介绍轴对称图形的应用与摆轴对称图形,在使本课的学习内容得以综合应用,拓展提高的同时,同时体现一些人文的东西和学科综合的东西在里头,也使数学学习与艺术创造有机结合,提高学生创新能力与创造能力,让数学回归于生活,就用于生活。第五个环节的展示,是为了让学生在展示中体验成攻感受,同时也为了在交流中从他人的成攻的作品中得到一些启示,实现不断创新。最后,对学生课后提的二点要求,是作业的生活形式化。让学生用最乐意的方式实现课堂的延伸。

《轴对称》课后的教学反思 篇4

对称是基本的图形变换,学习空间和图形知识的基础,能够帮助学生建立空间观念。

本册第一次教学轴对称图形,教材中安排了形式多样的操作活动,在本节课的教学中,我结合教材的特点,设计了三次操作活动,让学生在动手操作中逐步体验轴对称图形的基本特征。

一、创设情境教学

1、会折叠衣服的同学上台来展示一下叠衣服的方法。从而引出课题。

2、出示轴对称物体:天安门、飞机、奖杯、让学生观察它们有什么共同特点?学生观察发现,它们的两边都是一样的。

3、小树:通过不同剪法师生共同评价得出这些图形两边都一样的,所以先把纸对折,然后再剪,剪定后再展开,就是这棵小树了。

4、是本节课第一次操作活动,安排在学生观察生活中的对称现象后,目的在于让学生在操作中初步感知轴对称现象。

5、生这次操作活动看似一次无目的操作活动,但要一棵小树甚至一个漂亮的窗花,不去寻找规律,也是非常困难的,通过学生的交流,能初步感知到两边一样的图形可以对折起来再剪,这就是轴对称图形特征的初步感知。

二、动手画一画,折一折:

1、过把同学们看到的物体画下来得到下面的图形(天安门、飞机、奖杯等)进行分组操作讨论,得出结论——图形对称后,两边完全重合了,从而得出什么样的图形是轴对称图形。

2、是本节课的第二次操作活动,安排在学生对轴对称图形的特征有了初步感知之后。学生此次操作是由目的性,有导向性的操作,目的是在操作活动过程中,探究图形对折后折痕两边的部分完全重合这一基本特征,在此基础上解释出轴对称图形的概念。

三、想办法做出以各轴对称图形、并分组展示自己的作品。

1、是本节课达三次操作安排,且是在学生对轴对称图形有较为正确系统的认识之后,意在操作活动中巩固深化对轴对称图形的认识,学生这次操作活动手段是多样的,作品也是丰富多彩的。

2、次的操作活动目的不同,所产生的成效也截然不同,学生在这次活动中,通过有序、有层次的操作更加深对轴对称图形特征以认识,充分概念之轴对称图形的基本特征。

3、节课最大感受是由于课前准备充分,所有的练习和操作活动较为自然的串联在参观的情景中,课堂结构紧凑,学生兴趣浓烈,让学生用不同的方式、以不同的角度体会轴对称图形的特征。

《轴对称》数学教学反思 篇5

一、动手操作的的确确是学生理解知识的最好手段。学生通过亲自的动手操作,参与知识的形成过程,能把抽象的知识转化为直观,加深学生的理解。我在教学时应该让学生深入地思考,动手操作,理解得不透彻,巩固再多,也只能是事倍功半。在轴对称含义引出时太肤浅,应该多深入地折一折,说一说,让学生从内在自然引出轴对称图形含义。

二、在教学“想想做做1”时可以让学生说一说轴对称图形是左右对称还是上下对称,这样学生在后来的练习中就可以避免一些同学由于只看到左右对称而忽略上下对称导致的错误,减少错误的发生。这一点在备课时我也想到了,但是在左右思考斟酌后还是没有将它运用到我本节课的教学中。以至于出现后来的错误。

三、在教学想想做做5时教师应该先做一个示范,提醒学生不仅要看外面的图形,更要重视中间的图案,也就是说要中间的图案完全对称,这样也可以避免一些个别学生由于理解错误而出错。而且该题的解决反馈方式可以从一个一个校对改成全面观察校对,以赢得更多的时间去宽裕地解决其他问题。

四、教学的过程中,教师更应该设计很多的环节,来锻炼学生的灵活运用能力。我们在上课时,应该更深一步的挖掘课堂,使课堂上的每一个知识点,都能成为学生解决问题的坚实基石。只有达到这样的目标,我们的课堂才能成为有效课堂,我们的教学才会成为有效教学。

本节课最大感受是由于课前准备充分,所有的练习和操作活动较为自然的串联在一起,课堂结构紧凑,学生兴趣浓烈,让学生用不同的方式、以不同的角度体会轴对称图形的特征。

《轴对称》课后的教学反思 篇6

对称是一种最基本的图形变换,是学习空间与图形知识的必要基础,对于帮助学生建立空间观念,培养学生的空间想象力有着不可忽视的作用。

本册第一课教学任务就是教学轴对称,教材中安排了形式多样的操作活动,在本节课的教学中,我结合教材的特点,设计了三次操作活动,让学生在动手操作中逐步体验轴对称图形的基本特征。

创设情境教学,请会折叠衣服的同学上台来展示一下叠衣服的方法。从而引出课题。接着1、出示轴对称物体:天安门、飞机、奖杯、让学生观察它们有什么共同特点?学生观察发现,它们的两边都是一样的。2剪小树:通过不同剪法师生共同评价得出这些图形两边都一样的,所以先把纸对折,然后再剪,剪定后再展开,就是这棵小树了。

这是本节课第一次操作活动,安排在学生观察生活中的对称现象后,目的在于让学生在操作中初步感知轴对称现象。学生这次操作活动看似一次无目的操作活动,但要一棵小树甚至一个漂亮的窗花,不去寻找规律,也是非常困难的,通过学生的交流,能初步感知到两边一样的图形可以对折起来再剪,这就是轴对称图形特征的初步感知。

本节课教学中我更多的是作为学生学习的引导者、组织者、欣赏者而存在于学生的学习过程之中。教学中我更多的是关注学生对数学美感的感受、捕捉和创造能力的培养。主要体现在以下几个方面:

一、通过游戏与生活,感知对称美。

学生们都学习过剪纸,就已经会用对折的方法剪出左右两边形状、大小完全一样的图形。因此,现实中一些对称的图形学生在课前早已接触过,然而何谓“对称”,这一概念对于学生来说却是新鲜的。由此可见,如何让学生科学地认识并建立“对称”的概念是我这节课要达成的重要目标之一。因此,我设计“玩纸飞机”的这样一个活动,有效地帮助学生构建科学的“对称”概念,抓住对称的本质特征,让学生对“对称”的概念有更清晰的认识,也为其在生活中如何判断对称现象提供方法。

二、动手创造,感受对称美。

在“剪对称图形”这一环节,我注重学生主体性的探索与发现过程的经历,试图让学生通过自己的经验和思维得到对新知识的理解、顿悟。当出现一部分学生剪得慢,甚至剪不出来的情况时,我没有置之不理,更没有主导学生的思维,而是充分利用了学生的差异资源,提供了一个让学生探索、对话的时间和空间。学生在交流中相互启发,在尝试、失败、反思、再创造的过程中,理解知识,掌握方法,学会思考,并获得情感体验。尽管这里花费了一些时间,但充分体现了学生“悟”的过程。

三、欣赏图片,感悟对称美。

在学生了解了对称及对称图形后,让学生跟着图片一起欣赏各种对称物体、图形。把生活中的数学知识:对称及对称图形在课堂上进行抽象、概括后,又回到现实生活,让学生用数学的眼光去判断生活中的对称,培养学生用数学的眼光看生活中的数学,同时,进行了美的熏陶。

四、知识迁移,直观转抽象。

最后进行的是知识迁移,将知识逻辑化。探究平面图形中哪一些是轴对称图形,哪一些不是轴对称图形?这是一个教学难点,教师发给学生各种有代表性的平面图形,放手让他们自主去解决。学生通过亲自去折一折,能够很快的辨别出来是还是不是。又趁机让学生再次对这些图形按照对称轴的条数进行分类,这样,学生对轴对称图形又有了新的认识。因为三角形、梯形、平行四边形是这一部分最容易出错的地方,所以又指导学生对这些图形进行再次总结。这一过程的自主学习,可以随机出示几道判断题。对于知识点的处理,要让学生亲自去感受、去认知、去体验,学生将会对知识掌握得更加牢固。

当然这节课也是有不足之处的,问题主要是小组合作停留在表面形式上。练习时,我给学生设计了一道具有开放性的题目:以小组为单位,让每个学生发挥想象,剪出一些轴对称图形。这个合作题目我们细想一下,是很能体现数学学习的合作学习的。然而我布置后,学生在事先准备的彩纸上剪出一些轴对称图形,基本上是独立完成的,小组之间几乎没有交流,基本停留在独立学习的层次上,没有真正地讨论和合作,没有发挥小组合作的优势,学习效果没能真正代表本小组的水平。而且在汇报时,我只是让学生展示了一下自己的作品,没有进行知识的总结和挖掘。

仔细思考一下,如果让每个小组利用所剪的轴对称图形拼成一幅美丽的画,不是更能体现合作学习?合作过程中可以让组长分配,学生互帮互学,汇报时说出自己是怎样剪的,正好复习了轴对称图形的特征。我过于片面地追求课堂小组合作学习这一形式,对小组合作学习的目的、时机和过程没有进行认真设计,学生的合作流于形式,合作意识不强,只要有疑问,无论难易,甚至一些毫无讨论价值的问题都要在小组内讨论。合作又没有时间保证,有时学生还没进入状态,小组合作学习就在老师的要求下结束了。

这节课的教学,使我感受到,数学不再是简单的数学课,它将和精彩的生活共同演绎数学文化以及数学图形的美丽。“数学,如果正确地看她,不但拥有真理,而且也具有至高的美。数学提供了一种精确简洁通用的科学语言,数学语言正是以她的结构与内容上的完美给人以美的感受。”