首页 > 教学教案 > 教案大全 > 分数除法教案【优秀8篇】正文

《分数除法教案【优秀8篇】》

时间:

作为一名人民教师,通常会被要求编写教案,借助教案可以提高教学质量,收到预期的教学效果。我们该怎么去写教案呢?为大家精心整理了分数除法教案【优秀8篇】,希望能够给予您一些参考与帮助。

分数除法教案 篇1

教学目标:

使学生理解分数除法的意义,理解并掌握分数除以整数的计算法则,能正确地进行计算,并在教学中渗透转化的教学思考方法,培养学生的归纳概括能力。

重点难点:

分数除以整数的计算法则

教学准备:

实物投影仪

教学过程:

一、复习。

1.根据算式32×25=800写出两道除法算式。

2.说出下面各数的倒数。

0.25 、3、 5、 1、

3.填空。

(1)30÷5表示把30平均分成( )份,

求其中( )份是多少。

(2)求18的 是多少,可以用算式18×( ),

也可以用算式18÷( ),所以18÷3=18×( )。

二、新授。

1、师先从学生的生活经验入手,问:同学们都参过哪些兴趣小组呢?

大屏幕出示信息窗的情景图,问:大家可以提出哪些除法问题呢?

板书:给小猴子做一件背心需要多少米花布呢?

怎样列算式呢?

师:小组讨论一下,怎样计算呢?

哪位同学上来交流一下你组的计算过程呢?

教师归纳总结:

(1) 可以根据题意画出线段图。

(2) 利用平均分的。思想,把 米平均分成3段,实际上就是把9个 米平均分成3份,每份是3个 米,

(3)根据分数乘法的意义,把 米平均分成3份,求每份是多少,也就是求 的 是多少。

1、师小结:分数除以整数,如果分数的分子能被整数整除时,可以直接去除。如果分子不能被整数整除的,就乘分子的倒数。

2、教学绿点部分。

现在大家可以自己解决第二个问题了,(大屏幕出示:做一条裤子需要花布多少米?)

学生独立操作解答。

此题让学生明白,在解答分数除以整数的情况下,乘分子的倒数可以适用于任何情况,让学生体会将分数除法转化成分数乘法更具有普遍性。

师:小组讨论交流,观察、比较、分析“ ”和“ ”在计算方法上的异同点。

最后归纳出分数除以整数的计算方法:分数除以整数(0除外),等于分数乘这个整数的倒数。

问:上述结语中为什么要添上“0除外”?

三、巩固练习。

1.课本第61页的第1、2题。

2.下面的计算有错吗?错的请改正。

3.填空。

四、作业。

1.自主练习第4、8、9题。

2.判断对错

《分数除法》数学教案 篇2

教学目标

1.通过比较,进一步弄清求一个数的几分之几是多少的乘法应用题和相应的列方程解的应用题的数量关系之间的内在联系,解题思路,解题方法的联系和区别.

2.能正确熟练地解答稍复杂的分数应用题.

3.培养学生分析问题和解决问题的能力.

教学重点

明确分数乘、除法应用题的联系和区别.

教学难点

明确分数乘、除法应用题的联系和区别.

教学过程

一、启发谈话,激发兴趣.

在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答

时易混淆.这节课我们就来一起对这两类应用题进行比较.通过比较弄清它们之间的联系与区别.

二、学习新知

(一)出示例8的4个小题.

1.学校有20个足球,篮球比足球多 ,篮球有多少个?

2.学校有20个足球,足球比篮球多 ,篮球有多少个?

3.学校有20个足球,篮球比足球少 ,篮球有多少个?

4.学校有20个足球,足球比篮球少 ,篮球有多少个?

(二)学生试做.

1.第一题

解法(一)

解法(二)

2.第二题

解:设篮球有 个.

解法(一)

解法(二)

解法(三)

3.第三题

解法(一)

解法(二)

4.第四题

解:设篮球 个.

解法(一)

解法(二)

解法(三)

(三)比较区别

1.比较1、3题.

教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?

(1)观察讨论.

(2)全班交流.

(3)师生归纳.

这两道题都是把足球看作单位1,单位1的量是已知的,求篮球有多少个?

就是求一个数的几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多 ,而第(3)题是篮球比足球少 ,计算进一个要加上多的数,一个要减去少的个数.

2.比较2、4题

教师提问:这两道的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?

(1)观察讨论.

(2)全班交流.

(3)师生归纳.

这两道题都是把篮球看作单位1,而且单位1的量者是未知的,因此要设单位1的量为 ,根据一个数乘以分数的意义找出等量关系列方程解答.熟练之后也可以直接列除法算式解答.

分数除法教案 篇3

一、教学内容:分数与除法,教材第65、66页例1和例2

二、教学目标:1.使学生理解两个整数相除的商可以用分数来表示。

2、使学生掌握分数与除法的关系。

三、重点难点:1.理解、归纳分数与除法的关系。

2、用除法的意义理解分数的意义。

四、教具准备:圆片、多媒体课件。

五、教学过程

(一)复习

把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)

(二)导入

(2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0.5(块)

(三)教学实施

1、学习教材第65 页的例1 。

(1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0.3(块)

(2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?

通过练习,激活了学生原有的知识经验,(即两个数相除的商有可能是整数)也有可能是小数。进而提出当1÷3得不到一个有限的小数时,又该如何表示?这一问题激发了学生探索的积极性,创设解决问题的情境,研究分数与除法的关系。

( 3)指名让学生把思路告诉大家。

就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数来表示,这一份就是块。

老师根据学生回答。(板书:1 ÷ 3 =块)

(4)如果取了其中的两份,就是拿了多少块?(块)怎样看出来的?

通过这样的练习,为下面的操作打下基础。

2、观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法

3、学习例2 。

( 1 )如果把3 块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2 )3 ÷ 4 的计算结果用分数表示是多少?请同学们用圆片分一分。

老师:根据题意,我们可以把什么看作单位“1 " ? (把3 块饼看作单位“1”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。

通过演示发现学生有两种分法。

方法一:可以1个1个地分,先把1 块饼平均分成4 份,得到4 个,3 个饼共得到12个, 平均分给4 个学生。每个学生分得3个,合在一起是块饼。

方法二:可以把3 块饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到块饼,所以每人分得块。

讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)

两种分法都强调分得了多少块饼,让学生初步体会了分数的另一种含义,即表示具体的数量。借助学具,深化研究。

( 3 )加深理解。(课件演示)

老师:块饼表示什么意思:

①把3块饼一块一块的分,每人每次分得块,分了3次,共分得了3个块,就是块。

②把3块饼叠在一块分,分了一次,每人分得3块,就是块。

现在不看单位名称,再来说说表示什么意思?( 表示把单位“1 “平均分成4 份,表示这样3 份的数;还可以表示把3 平均分成4份,表示这样一份的数。)

( 4 )巩固理解

① 如果把2块饼平均分给3个人,每人应该分得多少块? 2÷3=(块)

②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)

③从刚才的研究分析,你能直接计算7÷9的结果吗?()

借助学具分饼、想象分的过程、抛开情境给出除法算式三个环节的呈现层次清楚,逻辑性强,为学生概括分数与除法的关系提供了足够的操作经验。

4、归纳分数与除法的关系。

( l )观察讨论。

请学生观察1÷3 = (块)3÷4 =(块)讨论除法和分数有怎样的关系?

学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)

用文字表示是:被除数÷除数=

老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。

( 2 )思考。

在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)

( 3 )用字母表示分数与除法的关系。

老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?

老师依据学生的总结板书:a÷b = (b≠0)

明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)

5、巩固练习:

(1)口答:

①7÷13= =( )÷( ) ( )÷24= 9÷9= 0.5÷3= n÷m=(m≠0)

②1米的等于3米的( )

③把2米的绳子平均分3段,每段占全长的 ( ),每段长( )米。

解释0.5÷3= 是可以用分数形式表示出来的,但这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数。

(2)明辨是非

①一堆苹果分成10份,每份是这堆苹果的 ( )

②1米的与3米的一样长。( )

③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的。( )

④把45个作业本平均分给15个同学,每个同学分得45本的 。()(3)动脑筋想一想

①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

(用分数表示)

②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?

教学反思

教材分析:本节课是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。

设计意图:

1.直观演示是学生理解分数与除法的关系的前提:由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3张饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3张饼的就是张。把2张饼平均分给3个人,每人应该分得多少张?继续让学生操作,丰富对2张饼的就是张饼的理解。学生操作经验的积累有效地突破了本节课的难点。

2.培养学生提出问题的意识与能力是培养学生创新精神:本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。

3.注重了知识的系统性:数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对0.5÷3=,部分学生会觉着的=表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。

分数除法教案 篇4

教学目标:

1、通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

教学重点:

弄清单位1的量,会分析题中的数量关系。

教学难点:分析题中的数量关系。

教学过程:

一、复习

小红家买来一袋大米,重40千克,吃了 ,还剩多少千克?

1、指定一学生口述题目的条件和问题,其他学生画出线段图。

2、学生独立解答。

3、集体订正。提问学生说一说两种方法解题的过程。

4、小结:解答分数应用题的关键是找准单位1,如果单位1的具体数量是已知的,要求单位1的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

二、新授

1、教学补充例题:小红家买来一袋大米,吃了 ,还剩15千克。买来大米多少千克?

(1)吃了 是什么意思?应该把哪个数量看作单位1?

(2)引导学生理解题意,画出线段图。

(3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量

(4)指名列出方程。 解:设买来大米X千克。

x- x=15

2、教学例2

(1)出示例题,理解题意。

(2)比航模组多 是什么意思?引导学生说出:是把航模组的人数看作单位1,美术组少的人数占航模组的

(2)学生试画出线段图。

(3)根据线段图,结合题中的分率句,列出数量关系式:

航模小组人数+美术小组比航模小组多的人数=美术小组人数

(4)根据等量关系式解答问题。 解:设航模小组有人。

+ =25

(1+ )=25

=25

=20

三、小结

1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)

四、练习

练习十第4、12、14题。

六年级上册数学分数除法教案 篇5

板书设计(需要一直留在黑板上主板书)

分数除法

例1:每盒水果糖重100g,那么3盒有多重?

100×3=300(g)

3盒水果糖重300g,那么每盒有多重?

300÷3=100(g)

300g水果糖,每盒重100g,可以装几盒?

300÷ 100=3(盒)

归纳总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

例2 :把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?

4/5÷2

方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。

4/5÷2=4÷2/5=2/5

方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。

4/5÷2=4/5×1/2=2/5

归纳总结:分数除以整数(0除外),等于分数乘这个整数的倒数( 结果最简。除号要变成乘号)

学生学习活动评价设计

通过这一节课的学习,要使学生理解并掌握分数除法的计算方法,会进行分数除法计算;会解答已知一个数的几分之几是多少求这个数的实际问题;并且这一节课的学习将要为后面运用比的知识解决有关的实际问题打好基础。

教学反思

本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。

主要内容包括:分数除法的意义与计算;解决问题;比的意义与基本性质等。本单元的内容和学生前面学习的很多知识具有比较直接的联系。如分数除法,除了与分数乘法的意义、计算及其应用有联系外,还与整数除法的意义,以及解方程的技能有关。而比的初步知识,则要用到分数和除法的一些基础知识。通过本单元的学习,学生一方面基本上完成了分数加、减、乘、除的学习任务,比较系统地掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的作用。我觉得在教学过程中,应充分考虑到学生自身对分数除法的意义的理解的基础上进行教学。在教学过程中要充分利用教材,激活学生已有的知识经验,引导他们展开类比思维,以促进学习的正向迁移。实际上,这也是本单元的课堂教学中,落实学生的主体地位,发挥教师主导作用的有效途径。引导学生数形结合,边操作、边观察、边思考,并通过讨论、交流,在理解的基础上得出算法,进而掌握算法。

分数除法教案 篇6

教学目标:

1、通过本课的复习使学生能很好的掌握本单元所学的知识,能正确 的计算分数的除法。

2、全盘对本单元的知识有个全面的了解,解决在学习时所遇到的问题。

3、能很好的计算分数乘除混合运算的题目。

教学重点:分数除法的计算的方法。

难点:分数乘除的混合运算的运算的计算的正确率

教学过程:

一、复习回顾

小组讨论

1、怎么样来计算分数除法

请学生进行讨论,讨论好以后 再请学生进行回 答。

2、教师强调:在计算分数除法的时候我们除以一个数等于乘以这个数的倒数。

请生说说你是怎么来理解这句话的。

二、进行练习

1、做课本66的1

请学生直接的在课本上进行口算,口算的时候让学生要看清题目,注意区分乘和除。

学生做好了以后再请学生进行口答。

对于做错的题目,让请学生自己来分析下错误的原因是什么?

2、做第2题

前面4题可以让学生独立的做,做好了以后再请学生说说计算的方法是怎么样的?

并请学生上黑板进行板演。

进行集体订正。

3、对比练习

1) 城东小学六年级有学生450人,占全校人数的2/9,全校有学生多少人?

2)城东小学有学生450人,六年级占其中的2/9,六年级有学生多少人?

4、做66页第4题

请学生独立的做,做好了以后请学生分析一下说说你是怎么想的?

做好以后请学生进行板演

5、根据方程或算式,将应用题补充完整。

1)、120×3/8

( ),苹果树的棵数是梨树的3/8,( )?

2)、3/8x=120

( ),苹果树的棵数是梨树的3/8,( )?

3)、120+120×3/8

( ),苹果树的棵数是梨树的3/8,( )?

请学生独立的做,做好了以后请学生说说是怎么想的?

三、布置作业

做66页第5~7题

1、在计算练习中,可增加以下练习,帮助学生进一步体会分数计算中的一些规律。

在( )里填上“>”“<”“=”

4/7×1/3( )4/7 4/7×4/3( )4/7

4/7÷1/3( )4/7 4/7÷4/3( )4/7

4/7÷1( )4/7 4/7×1( )4/7

先让学生独立思考,再说说判断的结果和理由。

2、在解决实际问题时,要紧紧围绕数量关系的分析学生掌握分数应用题的解答方法。

3、加强对比有利于学生辨析什么情况下列算式解答,什么情况下列方程式方便。

课后反思:

通过今天的复习,部分学生已初步感受到单位"1"的量未知,列方程解答,实际也可以用分数除法解答。于是我及时引导,再次让学生体会,从而理解乘除之间互逆关系。

在今天学习第4题的练习中,结合具体题目,补充了工作效率、工作时间、工作总量三个数量之间的关系,并结合学生体会到的分数乘除法之间的关系再次体会到列方程解与分数除法解的优劣。

在处理第7题的练习中,学生对变化着的“1”不注意,部分学生将国土面积乘5/2等于草地面积。归其原因还是没有掌握分数应用题数量关系。

分数除法教案 篇7

单元教材分析:本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。主要内容包括分数除法的意义和计算;解决问题;比的意义与基本性质,求比值一化简比,以及比的应用。通过本单元的学习,学生可以比较系统大掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。

单元教学目标:

1、理解并掌握分数除法的计算方法,回进行分数除法计算。

2、回解答已知一个数的几分之几是多少求这个数的实际问题。

3、理解不的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值

4、能运用比的知识解决有关的实际问题。

学情分析:

本单元学习之前,学生基本上完成了分数加、减以及分数乘法的学习。学生可以根据整数除法的意义理解分数除法的意义。

教学目标:

1、让学生理解分数除法的运算意义。

2、掌握分数除以整数的计算方法。

3、培养学生的计算能力和分析能力。

教学过程:备注

活动一:

出示例1

每盒水果糖重100克,3盒有多重?

1、读题理解题意

2、列式100X3=300

3、把乘法算式改成两道除法算式

300/3=100300/100=3

4、用千克做单位怎样列式?

1/10X3=3/10

5、|用同样的方法改写成除法算

小结:分数除法的意义

活动二:

出示例2

把一张纸的4/5平均分成2份,每份是这张纸的几分之几?自己试着折一折,算一算

1、把4/5平均分成2份,就是把4个1/5平均分成2份,每份就是2个1/5,就是2/5

2、把4/5平均分成3份,每份就是4/5的1/2,也就是4/5X1/2

3、根据上面的折纸实验和算式,你发现什么规律?

小结:(略)

活动三:

巩固练习:

1、31页做一做1、2

板书设计

略去设计

分数除法教案 篇8

教学目标:

1、能正确进行分数乘除的混合运算。

2、能用分数乘除的混合运算解决生活中的实际问题。

3、初步形成独立思考和探索的意识。

4、感受数学与生活的密切联系,激发学生学习数学的兴趣。

教学重点:

用分数乘除的混合运算解决实际问题。

教学难点:

分析题中的数量关系,正确地列出算式。

教学准备:

多媒体课件、实物投影

教学过程:

一、课前三分钟口算练习。

师:老师要先考考大家的口算能力

出示口算卡片,指生答

(挑选一两道题让学生说说计算方法)

二、情境导入:

师:同学们,规范认真的书写是每一个同学应具备的基本素质,不光语文上要规范书写,数学亦如此,经过一段时间的努力,同学们的书写水平都有了很大的进步,我们班也涌现出了数学书写之星,想知道他们是谁吗?想看看他们的作品吗?

师:好,那大家必须接受考验,闯过三关,找到三把金钥匙,有信心吗?

师:上节课我们学习了“分数乘除的混合运算”,这节课我们要运用所学知识解决生活中的数学问题。上一节分数乘除混合运算的练习课。

三、检查复习知识点与指导练习。

1、我会说

师:不计算,只说运算过程,你会说吗?

指生说

2、计算

师:知道了分数乘除混合运算的运算顺序和计算方法,你能准确无误的计算这两道题吗?试试看

指生到台前做。

学生讲解

师:能不能告诉大家,在计算时应该注意什么问题?

师:同学们说得真不错,这就是我们在计算时容易出现的错误,在做题的时候,大家要注意这些问题,正确进行分数乘除混合运算的计算。能做到吗?

指生到黑板上做

订正答案,及时反馈。出示错题,让学生找错误。并说说计算应注意什么问题。

3、解方程

师:看来,刚才这道题太简单了,没有难住大家。下面老师就要增加一点难度了,愿意接受挑战吗?(出示课件)

师:你能说一说解方程的步骤吗?

指生说

学生在练习本上完成本题,订正反馈

师:恭喜大家,拿到了第一把金钥匙。有信心拿到第二把吗?让我们继续闯关吧。

4、解决问题

学生独立完成,分析题意,订正答案

师:在大家的共同努力下,我们拿到了第二把金钥匙。第三把钥匙得靠自己了。有信心超越自我吗?

四、当堂测试:

师:请同学们独立完成当堂测试,检验一下自己的学习成果吧。

订正答案,及时反馈

师:恭喜大家,拿到了最后一把金钥匙。

师:现在三把钥匙都找到了,让我们一起来看看是谁获得了数学书写之星的称号,共同来欣赏他们的作品吧。(课件出示)

师:看了大家的书写,你想说点什么?

五、小结

师:通过本节课的学习,你有什么收获?

学生交流

师:同学们,这节课你学得快乐吗?希望同学们每一节课都能快乐学习,健康成长。