《中位数和众数教案(优秀3篇)》
在教学工作者实际的教学活动中,就不得不需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。教案应该怎么写才好呢?以下是人见人爱的小编分享的中位数和众数教案(优秀3篇),如果对您有一些参考与帮助,请分享给最好的朋友。
中位数和众数教案 篇1
一、教学目标
1、认识中位数和众数,并会求出一组数据中的众数和中位数。
2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。
3、会利用中位数、众数分析数据信息做出决策。
二、重点、难点和难点的突破方法:
1、重点:认识中位数、众数这两种数据代表
2、难点:利用中位数、众数分析数据信息做出决策。
3、难点的突破方法:
首先应交待清楚中位数和众数意义和作用:
中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。众数是当一组数据中某一重复出现次数较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少不受极端值的'影响。
教学过程中注重双基,一定要使学生能够很好的掌握中位数和众数的求法,求中位数的步骤:⑴将数据由小到大(或由大到小)排列,⑵数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。求众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据。
中位数和众数教案 篇2
一 、教学目标
1.在实际情境中,认识并会求一组数据的中位数、众数,并解释其实际意义。
2. 根据具体的问题,能正确选择运用平均数、中位数或众数。
3.感受统计在生活中的应用,增强统计意识,发展统计观念。
二、教学重点、难点
1. 教学重点:会求一组数据的中位数、众数。
2. 教学难点:能正确选择运用平均数、中位数或众数。
三、教学活动
(一)基础训练
1、口算下列各题
128+92 34+48 800+750 396÷12 850÷4 57÷2
2、只列式不计算
(二)创设情景,谈话引入
1、师生谈话引入
师:同学们这么小就充满爱心,要为祖国献爱心,那你们长大后想当什么呢? 学生自主回答,说出自己的志愿,老师及时给与评价。
师:看来你们每个人都有自己的想法,为了实现你们的理想,一定要从小做起加倍努力呀!老师想问你们一个问题,假如你现在刚刚大学毕业,在找工作时你应该关注什么?
生:关注公司的实力。
生:关注公司的工作环境。
生:我比较关注我的工资是多少?
师:是啊,工资的确是人们比较关注的一个条件,很多人在找工作时都要考虑这个问题。我的一位好朋友张明在求职的过程中就遇到了这方面的问题,我们一起来看一下。
2.出示招聘启示,指名读出。
招聘启示
本商场由于扩大规模,现招聘工作人员若干,月平均工资1000元,有意者请到经理处面谈。
多又惠超市
20xx年4月20日
师:从招聘启事中你能获得哪些信息?
生:月平均工资有1000元。
师:是啊!张明认为月平均工资1000元,待遇不错,于是来到这家公司。一个月后他拿到了650元的工资,觉得十分不满,他的工资水平远远低于1000元,
于是找到了经理。经理拿出了该公司工作人员月工资表,并再三强调月平均工资没有错,那么问题究竟出在哪呢?
3、师:大家认真观察这组数据,你发现了什么?
生:员工的工资全都低于1000元。
师:月平均工资1000元有没有错?
生:我算了一下,9个数的平均数是1000,月平均工资1000元没有错? 师:但大部分员工都没达到1000元,那问题出在哪里呢?
生:因为经理的工资高,所以把平均值拉高了。
小结:同学们分析得很有道理,由于平均数1000受到较大数据的影响,已经不能合理地反映这家公司工作人员工资一般水平了。
(三)、揭示问题,自主探究新知
1.中位数的定义
(1)引入中位数
师:再观察这组数据,你认为哪个数据最能代表员工工资的一般水平?自己先想一想,然后和你的同桌或其他同学交流一下。
(学生交流并汇报。)
生1:我认为是750元,因为它在中间更能表示员工工资的一般水平。 生2:我认为是750元,因为它不高也不低,能代表一般水平。
……
(2)导出中位数的特点
师:通过讨论,大家都能达成共识,认为750元最能代表员工工资的一般水平。观察750在这组数据中处于什么位置?
生:中间位置
(板书:中间)
师:再观察,这9个数据是怎么排列的?
生1:从大到小。老师用手势指示方向
生2:从小到大
(板书:从大到小(或从小到大))
师:我们把具有这种特点的数叫做中位数。(板书:中位数)
(3)总结中位数的定义
师:你能不能根据自己的理解说一说什么是中位数?
根据学生的说法,补充定义,完善中位数的定义。
全班齐读定义。
2. 中位数的即时练习
完成课本p88试一试
求出下面这组数据的中位数。
(1)。 数的个数是奇数情况
10151825323448(中位数:25)
(2)。 数的个数是偶数的情况。(在原题基础上加50)
1015182532344850
指出:中位数取中间两个数的平均数。
3. 众数的定义
师:过了一段时间,超市又聘请了两位新员工,请大家看看新的工资统计表。
特点?
生:发现有3个员工的工资是一样的,都是600元。
师:说明600出现的次数最多。
(板书:出现次数最多)
师:具有这样特点的数我们就叫众数。(板书:众数。)
师:根据你的理解说说什么是众数?
根据学生的说法,补充定义,完善众数的定义。
全班齐读定义。
4. 探索平均数、中位数和众数的作用
小组交流
(1)平均数1000元和中位数650元,哪个数表示工作人员的工资水平更合适呢?你是怎么想的?
(2)可以用众数600元表示工作人员月工资水平吗?为什么?
5.反馈交流情况。
师:平均数会因为一些特别偏大或特别偏小的数据的影响,不能很准确地反映一组数据的平均水平。而这种极端的数据对中位数、众数没有影响。中位数650元,众数600元,反映的'是中等水平的工资,能表示这组数据的中等水平。
6、点名课题
通过我们共同研究,不仅对平均数有了新的认识,还结识了两位新朋友:中位数和众数。(板书课题:中位数和众数)
(四)、巩固练习
【基础练习】
(1)在10、16、48、20、17、50、40中,中位数是( )。
(2)在52、60、48、60、41、72中( )是众数,( )是中位数。
(3)在1,2,3,4,4,3,2,1中,众数是( )
指出:中位数是唯一的数,而众数不是唯一的。
(4)红星电子配件厂第一生产组有11名工人,4月份每人的日均生产零件个数是:42,44,44,46,48,48,48,50,51,51,56,请根据这组数据求出这些工人日产
量的平均数、中位数和众数。
提出:在一组数据中,平均数、中位数和众数可以是相同的数。
【提高()练习】
1. 某小组进行跳绳比赛,每个成员1分钟时间跳的次数如下:
234,133,128,92,113,116,182,125,92.
(1)分别计算这组数据的平均数和中位数。
(2)你认为平均数、中位数哪一个能更好地表示这组同学的跳绳水平?
2. 某商店销售5种领口尺寸分别为38cm,39cm,40cm,41cm,42cm的衬衫,
商店统计了某月的销售情况(见下表)。 (五)、联系生活 突出现实意义
20xx年8月8日,北京举行第29届奥林匹克运动会。在28大项,302小项的运动项目中,跳水比赛是受欢迎的比赛项目之一,那你知道跳水比赛是怎么打分的?为什么这样做?
中位数和众数教案 篇3
一、教学目标:
1、进一步认识平均数、众数、中位数都是数据的代表。
2、通过本节课的学习还应了解平均数、中位数、众数在描述数据时的差异。
3、能灵活应用这三个数据代表解决实际问题。
二、重点、难点和突破难点的方法
1、重点:了解平均数、中位数、众数之间的差异。
2、难点:灵活运用这三个数据代表解决问题。
3、难点的突破方法:
首先应复习平均数、众数和中位数的定义,将这三者进行比较,归纳三者的各自特点,以保证学生在应用过程中不致盲目乱用。以下是这三个数据代表的异同。
平均数、中位数和众数都可以作为一组数据的代表,主要描述一组数据集中趋势的量。平均数是应用较多的一种量。另外要注意:
平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大。
众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少也不受极端值的影响。
平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应引起平均数的变动。
中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中,当一组数据中的。个别数据变动较大时,可用中位数描述其趋势。
实际问题中求得的平均数,众数,中位数应带上单位。
例题6的讲解要到位,分析要清楚,既要讲明白例题,也要使学生通过这个例题知道怎样去应用这三个数据代表分析问题,具体的注意事项将在例习题的意图分析中介绍。
三、例习题的意图分析:
教材P146例6的意图
(1)、这是在学习过数据的收集、整理、描述与分析之后涉及到这四个环节的一个例题,从分析和解答过程来看它交待了该如何完整的进行这几个过程,为该怎样综合运用已学的统计知识解决实际问题作了一个标准范例。教师在授课过程中也应注意,对已学知识的巩固复习。
(2)、从分析和解答过程来看,此例题的一个主要意图是区分平均数、众数和中位数这三个数据代表的异同。
(3)、由例题中(2)问和(3)问的不同,导致结果的不同,其目的是告诉学生应该根据题目具体要求来灵活运用三个数据代表解决问题。
(4)、本例题也客观的反映了数学知识对生活实践的指导有重要的意义,也体现了统计知识与生活实践是紧密联系的。
四、课堂引入:
本节课的课堂引入可以通过复习平均数、中位数和众数定义开始,为完成重点、突破难点作好铺垫,没有必要牵强的加入一个生活实例作为引入问题。
五、例习题的分析:
例题6中第一问是在巩固平均数定义、中位数定义和众数的定义。可以引导学生从问题中词语特点分析它们分别指哪个数据代表,教师也可以顺便加一个发散性问题,一般地哪些词语是指平均数、中位数和众数呢?
例题6中的第二问学生一般不易想到,教师要将较高目标衡量标准引向三个数据代表身上,这样学生就不难回答了。
第三问要抓住一半左右应与哪个数据代表的意义相符这个问题。即要很好的回答第三问,学生头脑必须很清楚平均数、中位数、众数的特点。
六、随堂练习:
1、在一次环保知识竞赛中,某班50名学生成绩如下表所示:
分别求出这些学生成绩的众数、中位数和平均数。
2、公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁)
甲群:13、13、14、15、15、15、16、17、17。
乙群:3、4、4、5、5、6、6、54、57。
(1)、甲群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是。
(2)、乙群游客的平均年龄是岁,中位数是岁,众数是岁。其中能较好反映乙群游客年龄特征的是。
答案:1.众数90中位数85平均数84.6
2、(1)15、15、15、众数(2)。15、5.5、6、中位数
七、课后练习:
1、某公司的33名职工的月工资(以元为单位)如下:
(1)、求该公司职员月工资的平均数、中位数、众数?
(2)、假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到元)
(3)、你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平?
2、某公司有15名员工,它们所在的部门及相应每人所创的年利润如下表示:
根据表中的信息填空:
(1) 该公司每人所创年利润的平均数是 万元。
(2) 该公司每人所创年利润的中位数是 万元。
(3) 你认为应该使用平均数和中位数中哪一个来描述该公司每人所创年利润的一般水平?答
答案:1.(1)。20xx 、500、1500
(2)。3288、1500、1500
(3)中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平。
2、(1)3.2万元 (2)2.1万元 (3)中位数