《比的意义(精选6篇)》
《比的意义》教学反思 篇1
《比的意义》这部分内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘法应用题的基础上进行教学的。,既有同类量的比,又有不同类量的比。
教学时着重说明两点:
(1)比值的表示法,可以用分数、小数、整数表示。
(2)比的后项不能是0。本课的教学重点是理解比的意义,会求比值。教学难点是理解比的意义。
在教学时,我从学生的实际出发,由神州5号发射引出课题,激发学生的学习兴趣。在学习比的意义的时候,我采用“导、拨”的方法,引导学生明确:对两个数量进行比较,可以用除法,也可以用比的方法,即谁是谁的几倍或几分之几,又可以说成谁和谁的比。使学生初步理解了比的意义,充分发挥了教师的引导作用。在学习比的各部分名称及读法、写法时,采用了让学生自学,组织学生以小组为单位进行研究、探索、讨论、总结,培养学生的创新意识和实践能力。在学习中我还特别强调了比的前项和后项,让学生明确那个量做前项,那个量做后项。另外,在教学时及时的对比、分数、除法进行比较,充分理解它们三者之间的联系与区别
在本节课的教学中也存在一定不足:有些细节地方处理得不是很到位,强调的还不够,如个别学生对两个数相除也可以说成两个数的比理解不深刻;在教学比与分数、除法之间的联系和区别时,给学生留的思考时间比较少,感觉有的学生没有真正理解之间的联系和不同,总之,还有很多地方需要学习改进。
比的意义 篇2
课题一:比的意义(a)
教学内容
教科书第46~47页和相应的“做一做”,练习十二的第1~4题。
教学目的
1.理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。
2.弄清比同除法、分数的关系。
教具准备
长3分米、宽2分米的红旗一面,投影仪。
教学过程
一、复习
教师:在日常生活和工农业生产中,常常需要对两个数量进行比较。比如这面红旗(教师出示红旗),它长3分米,宽2分米。要对这面红旗的长和宽进行比较,可以用什么方法?
引导学生回答:可以用减法,比较长比宽多多少或宽比长少多少。用除法,比较长是宽的几倍,或者宽是长的几分之几。
板书:3÷2==1……………长是宽的1倍
2÷3=……………………宽是长的
二、新课
1.导入新课。
教师:刚才我们用以前学过的方法对红旗的长、宽进行比较。这节课,我们要在用除法对两个数量进行比较的基础上,学习一种新的对两个数量进行比较的数学方法──比。(板书:比。)
教师:比表示什么意义呢?它怎么读,怎么写?各部分的名称是什么?比又和除法、分数有什么关系呢?这些都是我们这节课要学习的内容。下面我们先学习比的意义。(板书课题。)
2.教学比的意义。
教师:(指3÷2)看这个除法算式,长是宽的几倍需要哪个量和哪个量比较?
(长和宽比较。)
红旗的长是多少?宽呢?红旗的长和宽比较也就是几和几比?
(长和宽比较也就是3和2比。)
求红旗长是宽的几倍又可以说成长和宽的比是3比2.(板书:长和宽的比是3比2.)
(指2÷3)宽是长的几分之几是哪个量和哪个量比较?根据这个例子(指上例),想一想,宽是长的几分之几又可以说成什么?
引导学生说出:宽和长的比是2比3.教师板书。
小结:现在我们知道谁是谁的几倍或几分之几,又可以说成谁和谁的比。
教师:这两个例子都是对长、宽两个量进行比较,为什么一个比是3比2,而一个比是2比3呢?
引导学生回答:3比2是长和宽的比,2比3是宽和长的比。
这两个例子告诉我们:两个数量进行比较一定要弄清谁和谁比。谁在前、谁在后不能颠倒位置。
教师:刚才我们用除法和比的方法对红旗的长、宽进行了比较。在日常生活中,两个数量进行比较的事例有许多,请看这个例子(出示投影片):
“一辆汽车2小时行驶了100千米,这辆汽车的速度是每小时多少千米?
求汽车行驶的速度怎样计算?
学生回答时,板书:100÷2=50(千米)
100千米是汽车行驶的什么?2小时呢?汽车的速度需要哪个量和哪个量比较?
(路程和时间比较。)
那么汽车行驶的速度又可以说成路程和时间的比。
教师:在这个例子中,路程和时间的比是几比几?
学生回答后教师板书:路程和时间的比是100比2.
教师:现在看这些例子,都是用什么方法对两个数量进行比较的?(用除法。)那么表示两种量的两个数,它们之间具有什么关系?(相除关系。)是几个数相除?(两个数相除。)
学生回答后板书。
再看长和宽的比是3比2,宽和长的比是2比3,路程和时间的比是100比2,这又是用什么方法对两个数量进行比较的?(比的方法。)几个数的比?学生回答后教师板书:两个数的比。
(教师引导学生总结出比的意义:)通过这些例子可以清楚地看出:两个数相除又叫做两个数的比。
从比的意义看,两个数的比是表示两个数之间的什么关系?(相除关系。)学生回答后,教师在相除二字下面画上着重号,然后齐读。
3.教学比的读写法,各部分名称及求比值的方法。
教师:以上我们学习了比的意义,在数学中,比还有这样的记法。
3比2记作(板书:记作),先写3,再写“∶”,最后写2.(板书:3∶2)
提示学生比号的两个小圆点要写在两个数的正中间,它叫比号,读作“比”,那么这个比就读作3比2.让学生齐读一遍。
2比3记作(板书:记作),先写什么?再写什么?最后写什么?
教师提问,学生回答后教师板书。
100比2怎么写?学生回答后,教师板书:100∶2.
这两个比会读吗?齐读一遍,学生练习写比。
教师:在比中,每一部分都有它的名称。我们以3∶2为例(板书:3∶2),这叫什么符号?(学生答后板书:比号)比号前面的数叫做比的前项,(板书:前项)比号后面的数叫做比的后项。(板书:后项)
根据比的意义,比的前项和后项是什么关系?(相除关系。)在这个比中,用谁除以谁?(3除以2.)3除以2的商是多少?(1)
教师指出:我们把比的前项除以后项所得的商叫做比值。(板书:比值)1在这里就叫做3∶2的比值。
板书:3 ∶ 2=3÷2=1
┇ ┇ ┇ ┇
前 比 后 比
项 号 项 值
教师:从上面的式子可以看出,同除法比较,比的前项相当于除法中的被除数,比的后项相当于除法中的除数,比值相当于除法的商,可以用下表来表示。
比
前项
∶(比号)
后项
比值
除法
被除数
÷(除号)
除数
商
列完表后,教师指出:比和除法还是有区别的,不能完全混同起来,除法是一种运算,而比表示两个数的关系。
教师提问:那么,比和比值有什么区别和联系呢?
引导学生根据比的意义和比值的定义,弄清楚比值是一个数,是比的前后项相除所得的商,它通常用分数表示,也可以用小数表示,有时也可能是整数;而比是表示所比较的两个数的关系,如3∶2,也可以写成分数形式(但不能写成带分数,仍读作3比2.)
需要指出:比的后项不能是零。
让学生想一想这是为什么?引导学生联系比和除法的关系,由于比的后项相当于除法的除数,而除数不能为零,所以比的后项也不能为0.同时还要进一步指出,在体育比赛中的“几比几”,也使用“∶”号。但这只表示哪一队对哪一队比赛,各得多少分,不表示两队所得分数的倍比关系,与数学中的比的意义不同。比赛中时常出现0∶0或几比0的情况,而数学中比的后项是不能为0的。另外,比赛中的几比几是不能化简的。
4.做教科书第62页上半部分“做一做”的题目。
(1)完成第1题。
指名一学生在黑板上板演,其他学生独立完成。教师注意巡视,并察看学生是否将比号的位置写得规范。
然后提问:每个比的前项是几?后项是几?能不能把比的前项和后项颠倒?
教师指出:正如前面所讲,求长是宽的几倍,用长÷宽;求宽是长的几分之几,用宽÷长;所以交换了比的前后项的位置,比的具体意义就变了。
(2)完成第2题。
让学生独立完成,教师巡视,做完后集体订正。
5.教学比与分数的关系。
教师:两个数的比也可以写成分数形式。例如:3∶2可以写作,在这里,它表示两个数的比,仍读作3比2.
让学生齐读。
进一步举例:2∶3可以写作,100∶2可以写作。然后让学生齐读。
提问:分数和除法有什么关系呢?(分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。)
提问:根据分数和除法的关系以及比和除法的关系,比和分数又有什么关系呢?
引导学生弄清楚:比的前项相当于分数的分子,比的后项相当于分数的分母,比值相当于分数值。列表如下:
比
前项
∶(比号)
后项
比值
除法
被除数
÷(除号)
除数
商
分数
分子
──(分数线)
分母
分数值
列完表后,提问:比和分数有没有区别呢?
让学生明确分数是一种数,而比表示两个数相除的关系。
总结比、除法、分数三者在意义上的区别:比是指两个数相除,表示两个数的关系;除法是一种运算;分数是一种数。它们的意义是不同的。
6.做教科书第62页下半部分“做一做”的题目。
让学生独立完成,教师巡视。
集体订正时,指名学生说说自己用分数表示的比,并强调指出:虽然写的是分数形式,但不能读作几分之几,而应读作几比几。
三、巩固练习
1.做练习十二的第1题。
(1)做第(1)题。
教师提问:路程和时间的比是两个同类量的比,还是不同类量的比?(不同类量的比。)
路程和时间的比,得到的是什么量?(速度。)
教师指出:路程和时间的比表示的意义就是速度。
然后让学生独立做在练习本上,最后集体订正。
(2)做第(2)题。
先让学生独立完成,教师巡视。
集体订正时,让学生说说模型总数和人数的比表示的意义是什么。(表示的是平均每人做的模型数。)
(3)做第(3)题。
让学生独立完成,集体订正。
2.做练习十二的第2题。
让学生独立完成,教师注意巡视。完成后集体订正。
3.做练习十二的第3题。
让学生独立完成。集体订正时,可以让学生对比一下两个比值的关系,指出这种关系是一种反比例关系,今后要进一步学习。
4.做练习十二的第4题。
先让同桌的两名同学讨论对不对,教师注意旁听学生的讨论情况,然后指名学生回答自己的讨论结果。
教师指出:小强和爸爸身高的比属于同类量相比,同过去求一个数是另一个数的几倍或几分之几一样,相比的同类量的单位大小不一致时,比就失去了它的意义。因此,要求小强和爸爸身高的比,就要先把两个数量化成同单位的数。所以小强和爸爸身高的比应该是100∶173.
《比的意义》教学反思 篇3
《比的意义》是人教版小学六年级上册第三单元分数除法中第三节“比和比的应用”里的内容。《比的意义》属于起始课,是学生第一次接触到“比”的知识,将为学生学习百分比、比例等后续知识奠定基础,因此十分重要。现将我执教这节课的情况反思如下:
1、创设贴近学生生活情境,有效激发了学生兴趣,并对学生进行了爱国主义思想教育。本节课教材中的情境图是杨利伟在“神舟五号”飞船上展示联合国国旗和中国国旗的图片。因为考虑到“神五”飞天距离现在时间较长,而“天宫一号”发射成功刚刚发生,孩子们都知道。于是我在课始播放了“天宫一号”发射的视频,视屏播放后学生的情绪高涨,自豪与喜悦之情溢于言表,甚至不由自主的鼓起掌来。这时候我趁势提出了一个问题“此刻,你的心情是怎样的”,学生都争着、抢着说,“自豪”、“骄傲”、“激动”……爱国主义情感油然而生。然后再导到“神五”和杨利伟就十分自然,学生也乐于接受了。
2、在生活情境中辨析、理解知识。为了让学生明白“比”与分数、除法三者之间的关系,我用课件展示了两足球队比赛中,比分为2:0的情境,提问“这个比和我们今天学的'比一样吗?”学生通过思考和交流发现二者的区别,一个是比倍关系,一个是比差关系。随后,我又提出了一个问题“其实2:0本身就告诉了我们它和我们今天学习的比不一样,你们发现了吗?”。学生经过引导说出:“比的后项相当于除法中的除数,分数中的分母,不能为0。所以2:0和今天学的比不一样。”这个环节通过辨析,更加深了学生对比的意义的理解。目的还不仅于此,接下来我又问道:“比的后项相当于除法的除数,分数的分母,那后项呢,比号呢?”自然过渡到比较除法、比、分数三者间的关系上。由于是学生自己生发的问题,学生的探究欲和求知欲一下子被调动起来,学生学的主动,议的热烈,效果极好。
3、层层递进式练习,节节高升的巩固。新知学完后,我设计了三道课堂练习,第一道是最基本的比、除法、分数三者形式互换题目,所有的学生都能回答,满足了学生的成就感,激起学生继续练习的欲望。第二道是一道辨析题,小明身高1米,爸爸173厘米,二人的身高比是1:173对吗?大多数学生都能很容易发现不对,并且通过思考说出二人正确的身高比。这道题主要目的是在辨析、讨论的过程中认识到同类量的比单位要一致。第三题是一道实践题,三杯糖水,第一杯糖和水的比是1:20,第二杯糖和水的比是1:25,第三杯糖20克,水100克,哪一杯糖水最甜?我先让学生比较第一杯和第二杯,学生通过思考交流理解了两个比的意义后很快得出第一杯甜的结论。第三杯糖水出示后,让学生分析第三杯糖水的比应该是多少,引导发现第三杯糖水的配置比与第二杯相同,最终得出第一杯糖水最甜。三道题由易到难,逐层递进,引导学生步步深入,满足了不同层次学生的需要。同时三道题目形式多样,有填空,有讨论,有实践,而且切近学生生活,让学生感受的所学知识的现实价值,而且有效调动了学生的参与热情。
4、立足生活实际,拓展提升认识。做完课后小结,我提出了这样一个问题“既然除法和分数都表示相除关系,那人们为什么还要创造比呢?”学生的思维一下子被打开了。回答这个问题,我依然立足生活,用蜂蜜奶茶的配置连比,让学生感受到比能同时表示多个数量之间的关系的独特功能,让学生感受的数学知识的魅力,激起学生进一步学习知识的欲望。
这节课教学还有很多不足之处,例如时间把握不好,课始在创设情境这个环节占用的时间过多,导致后面的环节显得急促,尤其是在课堂练习环节,给学生思考和探究的时间太少,影响了学生对知识的深入理解。在以后的教学中要更加注重整体把握课堂,研读教材,不断提高自己的教学水平。
《比的意义》教学反思 篇4
这节课的失败,主要是教学设计有问题。由于我过分注重预设之外的生成,想通过小组合作讨论,使学生对教材上的整数比、分数比和小数比以及教材外的整数与分数、整数与小数、分数与小数的混合比的化简方法的掌握能一步到位。然而受学生认知规律和教学时间的限制,适得其反,学生就连教材上常见的整数比、分数比和小数比的化简方法也没有掌握到位,真是“小插曲”影响了”主旋律”,最终落了个两败俱伤。试想,如果本节课以教材上的整数比、分数比和小数比的化简方法为重点,以突出“主旋律”,在学生理解、掌握整数比、分数比和小数比化简方法的基础上,把师生互动,动态生成的化简混合比(整数与分数、整数与小数、分数与小数)的方法放在课尾或者课外去让学生探究,也许会收到良好的效果。具体感悟如下:
一、大力渲染“主旋律”
预设的学习结果是教学的最基本目标,一堂课能否得到丰富的“预设中的知识达成”决定着一堂课的成败。教师在课堂教学过程中要有目标意识,时刻注意围绕目标的实现展开教学活动,及时关注预设目标的达成情况,不断调整教学进程,引导课堂向着预期的目标进行。这节课的“主旋律”应该围绕比的基本性质和整数比、分数比以及小数比的化简方法进行。我在教学中对整数比、分数比以及小数比的化简方法的这个“主旋律”渲染得不够,突出得不够。
二、灵活点缀“小插曲”
教学中预设之外的生成是不可避免的。教师应根据生成的内容是否有利于达成教学目标,是否对学生的发展有价值等来灵活处理。抓住师生不期而至的、有价值的问题和观点,丰富教学目标。这节课的“小插曲”可能会是化简整数比、分数比和小数比的多种方法以及化简混合比的方法等等。
三、处理好“主旋律”与“小插曲”的关系
教师要尊重学生已有的知识和经验,灵活调整预设的程序。当课堂上没有“小插曲”出现或出现的“小插曲”内容学生无法解决时,我们就要按照这节课原来的预设程序去组织教学,大力渲染“主旋律”。当课堂上出现了“小插曲”,而且是学生运用已有的知识和经验能够解决的“小插曲”时,我们就要灵活调整这节课的预设程序去组织教学,灵活点缀“小插曲”。像这节课的“主旋律”(学生理解整数比、分数比和小数比的化简方法)还没有结束,学生解决“小插曲”(师生互动,动态生成的化简混合比:整数与分数、整数与小数、分数与小数的方法)的知识、经验还不够充分、扎实,“小插曲”也就很难擦出火花。可见只有当学生运用已有的知识和经验,有可能、有希望解决“小插曲”时,课堂上才可以花时间去装扮、点缀“小插曲”,才能使“小插曲”插得巧妙、自然,插得精当、齐所,插得委婉、动听。
比的意义 篇5
教学目标
1.理解,掌握比的读法和写法,认识比的各部分名称。
2.掌握求比值的方法,并能正确求出比的比值。
3.培养学生抽象、概括能力。
教学重点
理解,掌握求比值的方法。
教学难点
理解,建立比的概念。
教学过程
一、谈话引入
在日常生活和和工农业生产中,常常需要对两个数量进行比较。比较的方法我们已经学过两种(比较两个数量之间相差关系用减法;比较两个数量之间的倍数关系用除法),今天我们学习一种新的比较方法,叫做比。(板书:)
二、讲授新课
(一)教学例1
例1.一面红旗,长3分米,宽2分米。长是宽的几倍?宽是长的几分之几?
板书:3÷2= = 2÷3=
1.3÷2表示什么?长是宽的几倍也可以说成谁和谁在比?是几比几?长和宽的比是3比2表示什么?
2.2÷3表示什么?宽是长的几分之几也可以说成是谁和谁在比?是几比几?宽和长的比是2比3表示什么?
3.小结
(1)长是宽的几倍,有时也可以说成长和宽的比是几比几;宽是长的几分之几,有时也可以说成宽和长的比是几比几。
(2)3分米和2分米都表示长度,它们是同一种量,我们就说这两个量的比是同类量的比。
4.练习
有5个红球和10个白球,求红球是白球的几分之几,怎么算?也可以怎么说?求白球是红球的几倍,怎么算?也可以怎么说?
(二)教学例2
例2.一辆汽车,2小时行驶100千米,每小时行驶多少千米?
1.求的是什么?谁除以谁?也就是谁和谁进行比较?
2.汽车行驶路程和时间的比是100比2表示什么?
3.思考:单价可以说成是谁和谁的比?
工作效率可以说成是谁和谁的比?
商可以说成是谁和谁的比?
4.小结
通过刚才的例子可以看出,用表示两种数量的数相除,可以得到新的量,这个新的量也可以用两个数的比来表示,我们就说这两个量的比是不同类量的比。
(三)归纳总结
引导学生观察板书 ,什么叫比?
教师板书:两个数相除又叫做两个数的比。
(四)练习
1.学校里有10棵杨树,7棵柳树,杨树和柳树棵数的比是( ),柳树和杨树棵树的比是( )
2.小华用2分钟口算了50道题,小华口算的题量和所用时间的比是( ).
3.学校食堂买20千克青菜,用了10元钱;买了30千克萝卜,用了42元钱;买萝卜和青菜数量的比是( ),青菜和萝卜单价的比是( ).
(五)比的各部分名称和求比值的方法(演示课件)
1.两个数相除又叫做两个数的比,说法变了,书写格式和名称也就变了。
例如: 3比2 记作:3∶2
2比3 记作:2∶3
100比2 记作:100∶2
2.“∶”叫做比号,读作比(比号在两个数中间,注意与语文中的冒号区别),比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
板书:
3.提问:比的前项和后项能随便交换位置吗?为什么 ?
4.练习:求比值
教师说明:求比值不写单位名称。
(六)比、除法、分数之间的关系(演示课件“比、除法、分数的异同”)
1.教师提问
(1)两个数相除又叫做两个数的比,比和除法到底有什么关系?
(2)为什么要用“相当于”这个词?能不能用“是”?
(3)在除法中,除数不能是零,那比的后项呢?
2.比的分数形式
(1)教师:比还有一种表示方法,就是分数形式。例如:
板书:3∶2可以写成 ,仍读作“3比2“
2∶3可以写成 ,仍读作“2比3”
(2)思考:比和分数有什么关系?
三、巩固练习
(一)填空
两辆汽车,甲车4小时行驶200千米,乙车3小时行驶180千米。
1.甲车的速度可以说成( )和( )的比,是( )∶( ),比值是( ).
2.乙车的速度可以说成( )和( )的比,是( )∶( ),比值是( ).
3.甲、乙两车所行路程的比是( ).
4.甲、乙两车所用时间的比是( ).
5.甲、乙两车所行速度的比是( ).
(二)选择
1.大卡车载重量是5吨,小卡车载重量是2吨,大小卡车的载重量比是 .( )
2.如果a是b的3倍,那么a和b的比是1∶3.( )
3.小强的身高是1米,爸爸的身高是173厘米,小强和爸爸身高的比是1∶173.( )
(三)思考题
1.甲乙两队比赛结果是3∶2,是指这节课所学的比吗?
2.根据男、女生人数的比是4∶5,你可以知道男女生的具体人数吗?
3.一台机器上有大小两个齿轮,大齿轮有100个齿,每分钟25转;小齿轮有40个齿,
每分钟120转。根据所给条件,你可以写出哪些比?
四、课堂小结
今天这节课你学到了哪些知识?比和除法、分数之间的联系是什么?区别呢?
五、课后作业
(一)应用题,
1.小红3小时走了11千米。写出她所走的路程和时间的比。
2.航空模型小组8个人共做了27个航空模型。写出这个小组做的模型总数和人数的比。
3.商店一共运来8.2吨水果,其中有3.5吨是橘子。写出运来橘子的重量和运来水果的总重量的比。
(二)求比值。
4∶5 0.8∶0.4
六、板书设计
《比的意义》教学反思 篇6
为了较好实现本节课教学目标,在这节课中遵循学生的认识规律,坚持以学生为主体,教师为主导的原则,重视知识的形成过程。让学生在积极主动、愉快和谐的氛围中学习新知、培养能力。反思这节课教学的整个过程,主要有以下几点得失。
一、培养学生发现问题、解决问题的能力。
数学来源于生活,也服务于生活,在现实情境中体验和理解数学,这节课充分体现了这一教学理念。课始,教师以学生非常熟悉的东西——不同型号的国旗说起,引出教室黑板上的国旗的大小和升旗时的国旗的大小不同,从而引出国旗的大小虽然不同,但是它们的长与宽的比确实有密切联系的,引出比的初步认识,接着又联系了生活实际,举例生活中哪些地方存在比的关系,让学生充分发言,从而使学生感到数学来源于生活,生活中处处有数学
二、培养学生的自学能力。
体现了学生是学习的主体,教师是组织者、合作者这一教学理念。例如:我在介绍了比的意义后,出示自学提纲:
1、比的读写方法。
2、比的各部分的名称分别叫什么?
3、什么是比值?怎样求一个比的比值。
4、比值可以怎样表示?
5、比和比值有什么联系和区别?
放手让学生自学,培养了学生的自学能力。
三.培养学生独立思考、自主探索、合作交流的能力。
例如:在处理比与除法和分数的联系和区别这一教学难点时,用分组讨论等一系列的数学活动,使他们在活动中相互交流,相互启发,相互鼓励,共同体验成功的快乐,与此同时,也使学生感悟到了事物间的相互依存,相互转化。
四、新课失误的一点是没有掌握好教学时间。
最后一个环节虽然自己设计了,但在课堂中没有完成。也就是当学生认识比的后项不能是零这一知识点后,已经没有时间指出体育比赛中的“比”与这节课所学生的“比”是完全不同的两码事,没有讲明体育比赛中的“比”只是记录得分的一种形式,所以可以是以“几比零”的形式出现。只能在下节课中涉及。
总之,这节课有得也有失,本课的教学方法灵活多变,课堂气氛融洽,真正以学生为本,以学生为主体,重点突出,难点突破,学生在轻松愉快的氛围中学习教学内容!