《《可能性》教案【优秀5篇】》
可能性教案 篇1
【教学目标】
1.通过让学生经历实际问题的情景,认识事件发生可能性大小的意义。
2.了解事件发生的可能性大小是由发生事件的条件来决定的。
3.会在简单情景下比较事件发生的可能性大小。
4.通过创设游戏情境,让学生感受到生活中处处有数学。主动参与,做“数学实验”,激发学生学习的热情和兴趣,激活学生思维。
【教学重点、难点】
教学重点:认识事件发生可能性大小的意义。
教学难点:在问题情景比较复杂的情况下,比较事件发生的可能性大小
【教学过程】
一、 创设情境引入新知
提出问题:在一个盒子里放有4个红棋,1个蓝棋,摸出一个棋子,可能是什么颜色?摸出红棋的可能性大还是摸出蓝棋的可能性大?
为了解决这个问题,可先让学生分小组进行摸球游戏:
1、每位同学轮流从盒子中摸球,记录所摸得棋子的颜色,并将球放回盒中。
2、做20次这样的活动,将最终结果填在表中。
3、全班将各小组活动进行汇总,摸到红棋的次数是多少?摸到蓝棋的次数是多少?
4、如果从盒中任意摸出一球,你认为摸到哪种颜色的棋子可能性大?
游戏的结论:
在上面的摸球活动中,每次摸到的球的颜色是不确定的。摸出红棋的可能性比摸出蓝棋的可能性大,原因是红棋的数量比蓝棋多。
一般地,不确定事件发生的可能性是有大小的。
说明:摸棋游戏教师首先要使学生明确试验的过程,“摸出一个棋子,记录下它的颜色,再放回去,重复20次”。然后还要使学生明确组内成员的分工,应有人负责摸出棋子,有人负责记录下它的颜色,并应提醒学生在试验前要选择好统计试验数据的方法(可以用画“正”字的方法)。而且还要向学生说明在试验的过程中,应注意保证试验的随机性,如:每次摸棋子前应将盒中的棋子摇匀;摸棋子时不要偷看等。在各小组进行试验的过程中,教师应关注每一个小组,及时给予指导,保证试验的随机性。
二、观察思考 理解新知
请考虑下面问题:
(1)如果你和象棋职业棋手下一盘象棋,谁赢利的可能性大?
分析:根据本人的实际棋艺水平来确定,答案不唯一。
(2)有一批成品西装,经质量检验,正品率达到98%。从这批西装中任意抽出1件,是正品的可能性大,还是次品的可能性大?
分析:要比较“任意抽出1件是正品”与“任意抽出1件是次品”两个事件发生的可能性大小,只要比较两个事件发生的条件:“正品率达到98%”与“次品率达到2%”,显然抽到正品的可能性大。
(3)任意抛一枚均匀的硬币,出现正面朝上、反面朝上的可能性相等吗?
分析:任意抛一枚均匀的硬币,有两种可能①正面朝上②反面朝上,因为它们出现的机会均等,所以出现正面朝上、反面朝上的可能性相等。
(4)一个游戏转盘如图,红、黄、蓝、绿四个扇形的圆心角度数分别是90°,60°,90°,120°。让转盘自由转动,当转盘停止后,指针落在哪个区域的可能性最大?在哪个区域的可能性最小?有可能性相等的情况吗?为什么?
分析:因为绿色扇形区域面积最大,黄色扇形区域面积最小,红、蓝色扇形区域面积相等,所以指针落在绿域的可能性最大,黄域的可能性最小,红、蓝域的可能性相等。
从上可得出以下结论:
①事件发生的可能性大小是由发生事件的条件来决定的。
②可能性的大小与数量的多少有关。
数量多(所占的区域面积大)?可能性大
数量少(所占的区域面积小)? 可能性小
三、师生互动运用新知
例1某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?
分析:在教学中要求学生先分清事件发生的条件分别是什么?事件“遇到红灯”发生的条件是“红灯时间设置40秒”,事件“遇到绿灯”发生的条件是“绿灯时间设置60秒”,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到红灯的可能性最小。本例相对容易,可让学生通过交流自己完成。
完成P76 1,2的做一做
例2某旅游区的游览路线图如图3—4所示.小明通过入口后,每逢路口都任选一条道.问他进人A景区或B景区的可能性哪个较大?请说明理由.
分析:本题有一定难度,教学时要抓住这两个事件发生的条件,可分以下几个步骤:
(1)小明进入旅游区后一共有多少种可能的路线?可以把小明进入旅游区的A景点或进入旅游区B景点的过程分解为两个步骤:第一步进入左、中、右主干线,有3种可能,第2步进入每条主干线的两条支线,各有2种可能;
(2)将上述结果列表或画树状图;
(3)确认各种可能性是否相等,确认“进入A景点” “进入B景区”分别占了多少种,也就是确定两个事件发生的条件;
(4)比较两个事件发生的条件,判定哪个事件发生的可能性大。
完成课内练习1,2
四、梳理知识 形成结构
通过本节课的学习,谈谈你的收获?
在交流中,师生可共同梳理知识点:
(1)事件发生的可能性大小是由发生事件的条件来决定的。
(2)可能性的大小与数量的多少有关。
数量多(所占的区域面积大)?可能性大
数量少(所占的区域面积小)? 可能性小
五、应用新知 体验成功
1、小明任意买一张电影票(每排有40个座位),座位号是2的倍数与座位号是5的倍数的可能性哪个大?
答案: 2的倍数可能性哪个大。
2、请你在班上任意找一名同学,找到男同学与找到女同学的可能性哪个大?为什么?
答案:要根据该班的男、女实际人数来确定.如该班男同学22名,女同学24人,则任意找一名同学,找到女同学与的可能性比找到男同学的可能性大。
3、某公交车站共有1路、12路、31路三路车停靠,已知1路车8分钟一辆;12路车5分钟一辆、31路车10分钟一辆,则在某一时刻,小明去公交车站最先等到几路车的可能性最大。
答案:间隔时间最短,31路车间隔时间最长,所以小明去公交车站最先等到12路车的可能性最大。
4、盒子中有8个白球、4个黄球和2个红球,除颜色外其他相同。任意摸出一个球,可能出现哪些结果?哪一种可能性最大?哪一种可能性最小?
答案:任意摸出一个球,可能摸出白球、黄球或红球。任意摸出一个球,摸出白球可能性最大,摸出红球可能性小。
5、如图是小明家地板的部分示意图,它由大小相同的黑白两色正方形拼接而成,家中的小猫在地板上行走,请问:小猫踩在哪种颜色的正方形地板上可能性较大?
讲故事5张
唱 歌 3张
跳 舞 1张
答案:由于黑色正方形比白色正方形块数多,所以小猫在地板上行走,踩在黑色的正方形地板上可能性较大。
6、联欢会上小红可能抽到什么节目?
抽到什么节目的可能性最大?抽到什么节目的 可能性最小?
答案:联欢会上小红可能抽到的节目是讲故事、唱歌或跳舞。抽到讲故事节目的可能性最大。
7、连续两次抛掷一枚均匀的硬币,朝上一面有几种可能?你认为两次正面朝上与一次正面朝上、一次正面朝下发生的可能性哪个大?
答案:
朝上一面有4种可能:①正、正 ②正、反③反、正 ④反、反。
一次正面朝上,另一次正朝面下发生的可能性大。
六、布置作业巩固新知
作业题:1 — 4必做5、6选做。
数学《可能性》教案 篇2
教学目标:
1、通过多种活动,充分体验有些事情的发生是确定的,有些事情的发生是不确定的,并能用一定、可能、不可能来描述事情发生的可能性。
2、在探索、解决问题的过程中,形成初步的判断、推理、概括能力。
3、激发学生学习数学的兴趣,产生积极的情感体验。
教学重点:
感受体验事情发生的确定性和不确定性,会判断生活中一定、可能、不可能发生的事情。
教具学具:
课件、彩球、塑料袋
教学过程:
一、创设情景,初步感知
1、初步感受事情发生的确定性
(1)用一定来描述事情发生的确定性。
师:同学们,老师最近学会了一种很神奇的魔法,想表演给大家看,你们想看吗?
生:想看。
师:老师手里有一个魔袋(一个不透明的袋子),里面装着一些彩球,请同学们从里面任意摸出一个,我能猜出它是什么颜色的。你们相信吗?
(学生有的说信,有的说不信)
师:那我们就试试吧。
(师出示一个不透明的袋子,里面装有彩球,请学生任意摸出一个球,老师都能准确猜出球的颜色。学生猜测,袋中装的都是黄颜色的球。)
师:因为袋中装的全都是黄球,所以从里面任意摸出一个,结果怎样?
师:当事情确定会发生时,我们可以用一定来描述。(板书:一定)
把白球倒入空的不透明的袋子中,请学生描述会摸到什么颜色的球?
[设计意图:良好的开端是成功的一半,一开始由猜球游戏导入新课,使学生很快进入最佳学习状态,兴趣盎然、主动参与。使学生在参与猜球的过程中明白一定的涵义,初步体验到什么有些事件的发生是一定的。]
(2)用不可能来描述事情发生的确定性。
师:林老师想从袋中(刚才装白球的袋)摸出一个红球,行吗?为什么?
师:确定不会发生的事情,我们就用不可能(板书:不可能)来描述。从这个袋中还不可能摸出什么颜色的球?
[设计意图:在学生已经理解一定的基础上,自然而然地引出不可能发生的事情,进一步体验什么情况下事件的发生是不可能的。至此,学生对确定性事件已经形成了初步的认识。]
可能性教案 篇3
教学内容:
小学数学苏教版国标本第五册P92-93的内容
教学目标:
1、体验有些事件的发生是确定的,有些则是不确定的;
2、知道事件发生的可能性是有大小的;
3、培养学生学习数学的兴趣,形成良好的合作学习的习惯。
教学重点:
使学生经历实验的具体过程,从中体验某些事件发生的可能性的大小,能对简单实验可能发生的结果或某些事件发生的可能性的大小作出简单判断,并作出适当的解释。
教学难点:
在实验过程中引导学生形成正确的科学认识。
教学理念:
放手让学生做实验的主人。
教学设计:
教学步骤
教师活动过程
学生活动过程
一、创设情境,导入新课
1.学生们,我们来开展一次摸球比赛,好不好?每人轮流摸一次球,哪个队摸到的白球次数多就取胜。
请出8名男同学和8名女同学分别组成男生队和女生队,我们来进行男女生对抗赛。(每次摸之前把球先搅动几下。)
2、每队拿一个袋子,袋子里装着白球和黄球。
(男生队的袋子里3白1黄,女生队的袋子里34黄1白)
3.(比赛结束后)哪个队获胜?
4.(取出内袋)女生队,你们有什么想说的?男生队为什么会赢?
师:因为袋里的白球和黄球的个数不同时,摸到的可能性就有大有小了。
让学生先估计。
学生实践。
让学生结果进行讨论。
教学内容
教师活动过程
学生活动过程
二、实践探索,初步体验
三、做做想想,深化认识
今天我们就要来研究这方面的内容。
(板书课题:统计与可能性)
1.师生互动:
(1)同学们,你们想不想自己来摸球?
刚才在摸球比赛时大家是通过数的方法来得到他们摸球的结果,这次我们要用涂方格的方法来统计摸球的情况。
(2)请两名同学上来摸球,老师进行统计。
2、学生小组操作(出示要求):
(1)在还没摸之前,请大家猜一猜,白球会摸到几次?黄球会摸到几次?
(2)大家的猜测是否正确呢?下面请组长负责记录,其他组员轮流摸球,看哪一组完成得又快又好!
(3)完成后观察统计的结果,你发现了什么?
3、交流。
(一)抛正方体
1、做完了摸球游戏,下面我们要来玩抛正方体。
(1)请大家猜一猜,会出现什么结果?
(2)出示统计表,师简要说明。
(3)分组活动,师巡视。
(4)展示交流,指着统计图说说你们的结果,算出四个组的合计数,你发现了什么?为什么?
(5)如果要让“1”出现的次数更多,怎么办?
学生看桌上的袋子里面装了哪些球?
学生估计谁是胜者。
学生分组活动,师巡视。
学生展示统计结果,并进行小结。
说说从中发现了什么?
学生进行讨论,如有必要安排实验。
教学内容
教师活动过程
学生活动过程
四、联系实际,灵活运用
(二)连一连
1、过渡:刚才我们通过摸球,抛正方体,知道了当条件不同时,所产生的可能性是有大小的。下面请大家看一看,这些结果是怎样产生的?
3、连一连,并说说为什么?
安排运动会:
(1)我们学校的喜事接连不断,在前不久举办的江都市小学生田径比赛重,我校的田径队获得了全市第一名。这一切都离不开田径队平时的艰苦训练。再过几天,10月份我们学校举办学校田径运动会,具体日子还没定下来,你们认为选什么样的日子比较好呢?
(2)在我们每组的桌上都有一份1994年到20xx年三月份的天气情况,请小组讨论一下,你们准备选哪一天?为什么?
(3)交流
(4)小结:大家的选择都很有道理,我会把它转告给篮球比赛的负责人,我相信一定会采纳大家的意见的!
学生活动
(1)在小正方体的2个面上写“1”,2个面上写“2”,2个面上写“3”。
(2)把小正方体抛30次,用涂方格的方法记录“1”、“2”、“3”朝上的次数。
让学生对实验结果进行分析。
(3)出示P93第4题,学生独立完成。
学生小组合作,先进行讨论选择什么天气的日期。
分工合作在已有的就日历中寻找理想的日期。
每个小组推举一名学生汇报结果。
教学内容
教师活动过程
学生活动过程
五、全课总结
同学们,今天这堂课你有什么收获?
教师小结:在我们生活中,有很多事件的发生都是有它的可能性,而且可能性是有大小的。不过在很多时候,我们可以根据一些条件,来预测可能性的大小
学生举手发言,汇报本课的收获。
教学理念:(教学设计说明)
这节课的内容是通过实验让学生初步体会有些事件发生的可能性是相等的,有些事件发生的可能性是有大有小的,引导学生积累判断事件发生可能性大小的经验。在教学设计中注意了以下几点:
1.放手让学生做实验的主人,通过实验这一教学途径来达成教学目的的。
2.突出了让学生在数据收集整理的基础上建立对事件发生可能性大小的清晰体验。
3.不能满足于引导学生经历实验的过程,在经历过程的基础上引领学生对其中的数学思想和知识有所体验和感受,并能还原于生活,运用于生活。
可能性教案 篇4
教学目标:
1、使学生经历和体验收集、整理、分析数据的过程,学会用画正字的方法收集整理数据,能完成相应的统计图,并体会统计是研究、解决问题的方法之一。
2、使学生经历实验的具体过程,从中体验某些事件发生的可能性的大小,能对简单实验可能发生的结果或某些事件发生的可能性的大小作出简单判断,并作出适当的解释,和同学交流自己的想法。
3、培养学生积极参与数学活动的意识,初步感受动手实验是获得科学结论的一种有效的方法,激发主动学习的积极性,进一步发展与他人合作交流的意识与能力。
教学重点:
通过活动认识一些事件发生的等可能性。
教学难点:
理解红球和黄球的个数相等时,任意摸一次,摸到红球和黄球的***会是相等的。
教学准备:
多媒体,红球3个 黄球3个
教学过程:
一、创设情境,激趣导入。
1.出示装有3个红球的袋子
(1)谈话:如果从中任意摸一个球,结果怎样?(一定摸出红球)
(2)往口袋里加入3个黄球,如果从这样的口袋里摸一个球呢?(可能摸出红球,也可能摸出黄球)
2.揭题:在我们的生活中,有些事情一定会发生,有些事情会不会发生难以确定,只能说具有可能性。今天我们继续研究可能性问题。(板书:可能性)
二、活动体验,探索新知。
1、摸球。
(1)猜测。
(出示上述装有3个红球和3个黄球的透明口袋)
谈话:不看球从这个口袋中每次任意摸一个球,摸出以后把球再放回口袋,一共摸40次。猜一猜,红球和黄球可能各摸到多少次?
学生自由猜测
(2)验证。
谈话〈WWW.BAIHUAWEN.com〉:这仅仅是我们的猜测,想知道自己猜得对不对,我们可以怎么做?(摸一摸)
①明确活动要求。
谈话:摸前先把袋中的球搅一搅,然后不看球从中任意摸一个,摸出后进行记录,把球再放入口袋中,如此,一共摸40次。
②明确统计方法。
提问:怎样能记住每次摸球的结果呢?
以前我们用过哪些方法来记录?(画、涂方块)
数学《可能性》教案 篇5
【教学内容】
义务教育课程标准实验教科书(西师版)四年级上册第125~126页例1、例2,第127页课堂活动,练习二十五第1题。
【教学目标】
1、能在活动中初步体验有些事件的发生是可能的,有些则是不可能的。
2、在具体的情景中能用“一定”、“可能”、“不可能”等术语来判断生活中的确定现象和不确定现象。
3、体验数学与生活的联系,培养学生猜想、分析、判断、推理以及语言表达能力。
【教学重点】
在具体的活动情景中体验生活中的确定现象和不确定现象。
【教学难点】
能用比较规范的数学语言对确定现象和不确定现象进行分析描述。
【教具学具准备】
硬币、装乒乓球的盒子等。
【教学过程】
一、情景引入
1、教师:上课之前告诉同学们一个消息,我们班马上要转来一位新同学,请同学们猜一猜,是男同学还是女同学?”
2、学生猜:可能是男同学,也可能是女同学,不能确定,都有可能。
3、教师小结:生活中,有些事情我们可以确定它的结果,有的事情则不能确定它的结果。这节课我们一起来研究事情发生的可能性。
(板书课题)
二、探究新知
1、研究不确定现象。
(1)教师:大家喜欢玩游戏吗?我们来玩一个抛硬币游戏怎么样?抛硬币之前请同学们猜一猜硬币落地后,是
正面向上呢?还是反面向上?
(2)学生分组进行抛硬币活动,注意记录和观察硬币落地后,是正面向上还是反面向上。
(3)活动后请学生用语言描述硬币落地后,是正面向上还是反面向上,得出这件事是不确定的结论。
(4)教师引导学生用规范语言描述:同学们的这些意思,在数学上我们一般用“可能……也可能……”(板书:可能……也可能……)这个词语来描述这种不确定现象。
(5)教师小结:抛一枚硬币,落地后可能是正面向上,也可能是反面向上,在数学上,我们把像这样的,可能出现的结果不止一种,而使人们事先不能确定的现象叫做“不确定现象”
(板书:结果不止一种?不确定)。
2、研究确定现象
(1)展示盒子里的球——全是白球。学生可分组摸球后,记录摸球后的结果。教师:当盒子里全是白球时,从里面任意摸出一个,结果怎样呢?学生用自己的语言进行描述:全是白球,都是白球……
教师引导规范语言:同学们的这些意思,在数学上我们一般用“一定”这个词来说。
(板书:一定)
教师:这样放球可能从盒子里摸出黄球吗?
学生用自己的语言进行描述:不可能,不会……
教师引导规范语言:同学们的这些意思,在数学上我们一般用“不可能”这个词来说。
(板书:不可能)
教师:(展示盒子里的球——全是黄球)当盒子里全是黄球时,从里面任意摸出一个,结果又怎样呢?
学生用“一定”、“不可能”来描述摸球结果。教师小结:像这样结果只有一种,我们就用“一定”、“不可能”来描述确定现象。
三、猜想验证
1、(教师将两种球混装)提问:现在盒子里装了3个黄球和3个白球,从里面任意摸出一个,会是什么球呢?教师引导学生用规范语言来描述摸球结果。
2、小组摸球,试验验证。
(1)试验要求。
教师:老师给每组都准备了一个盒子,里面有3个黄球和3个白球。请组长负责安排,小朋友按次序摸球。
要求:
①每人可以摸两次,摸之前要先想想:会摸出什么球呢?然后再摸。
②组内的记录员要将小朋友每次摸球的结果记录下来。
③每次摸出的球要放回盒子里摇一摇,再继续摸。教师:比一比哪个小组最会合作,小组活动开展得又快又好。小组活动,教师巡回指导。
(2)教师小结:完成教科书127~128页1~3题。
2、讨论生活中的不确定现象。
教师:生活中,哪些是可能发生的事情?哪些是一定要发生的事情?
教师举例,引导思考,如:“猜中指”、“石头、剪子、布”等游戏。教师:谁来介绍一下这些游戏?你能预测一下结果吗?
教师小结:可能出现的结果不止一种,是事先不能确定的。
学生举例,分析游戏结果。
教师:想一想,平常你还玩过哪些游戏,或者你能不能自己来设计这样一个游戏,使它可能出现的结果不止一种,是事先不能确定的。
要求:独立思考,同桌互玩,边玩边想:这个游戏的结果是确定的吗?为什么?
学生汇报交流。
教师小结:刚才大家说的这些有趣的游戏,它可能出现的的结果不止一种,在玩之前是不能确定的,属于数学上的“不确定现象”。也正是因为结果的不确定,人们才可以反复玩,在可能出现的结果中去感受无穷的乐趣。
四、全课小结
教师:今天我们研究了什么知识?你有哪些收获?