《倒数的认识优秀教学设计优秀4篇》
求一个数的倒数,培养学生阅读理解的能力,提高学生观察、比较、抽象、概括以及合作学习、口头表达的能力。为大家精心整理了倒数的认识优秀教学设计优秀4篇,希望能够帮助到大家。
倒数的认识教学设计 篇1
一、创设情境、导入新课。
1、课件出示:吞---吴干---士杏---呆。
2、请同桌互相交流一下,找一找下面文字的构成有什么规律吗?
3、学生汇报。
4、同学们观察的非常仔细,这种现象在数学中也有,今天这堂课我们就来研究倒数的知识。(板书课题:倒数的认识)
二、出示学习目标
1、能够理解和掌握倒数的意义。
2、学习求一个数的倒数的方法,能正确地求出一个数的倒数。
三、探究新知识
1、课件出示例1的算式,开展小组活动:算一算,找一找,这组算式有什么特点?
2、小组汇报交流。(通过计算,发现每组两个数的乘积都是1,还发现了相乘的两个分数的分子和分母的位置是颠倒的)
3、同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,也发现了每组两个数的乘积都是1,我们现在就可以得出倒数的定义了:乘积是1的两个数互为倒数。(板书)
4、提问“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。
5、强调“两个数”“乘积是1”
6、出示0.4×2.5=1,让学生说一说0.4和2.5可不可以说互为倒数。
7、随堂练习:判断:(1)得数是1的两个数叫做互为倒数。(2)因为10×1/10=1,所以10是倒数,1/10是倒数。(3)因为1/4+3/4=1,所以1/4是3/4的倒数。
8、出示例题2,找一找哪两个数互为倒数?再说一说你是怎么找的?
9、以小组为单位进行讨论交流。
10、分组汇报:
第一种方法:看两个分数的乘积是不是1。
第二种方法:看两个分数的分子与分母是否分别颠倒了位置。
哪一种方法比较快?
11、观察书中的找倒数的方法,强调:3/5的倒数是5/3,不能用等号相连。
我们刚才知道了真分数、假分数和整数找倒数的方法:还有一些数找倒数的方法我们没有归纳。请同学们想一想下面的数怎么找倒数?
1、真分数、假分数。
2、整数
3、小数
4、带分数(板书)
12、例2中还有哪些数没有找到倒数?
13、提问:1和0有没有倒数?如果有,是多少?(小组讨论、汇报。)
四、巩固练习
我们现在应用今天学习的知识解决一些问题。
五、课堂总结。
板书设计成知识树。
小学数学教案倒数的认识 篇2
课题:倒数的认识
教学内容:p27倒数的认识,练习六全部习题。
教材简析:这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。
教学要求:使学生认识倒数的概念,掌握求倒数的方法,能比较熟练地求一个数的倒数。
教学过程:
一、用汉字作比喻引入
1、师指出:我国汉字结构优美,有上下、左右……结构,如果把“杏”字上下一颠倒成了什么字?“呆”把“吴”字一颠倒呢?(吞)……一个数也可以倒过来变为另一个数,比如“3/4”倒过来呢?(4/3)“1/7”倒过来呢?(7/1也就是7)这叫做“倒数”,随即板书课题。
2、提一个开放性的问题:看到这个课题,你们想到了什么?
(学生各抒己见)
师生共同确定本节课的目标——研究倒数的意义、方法和用处。
二、新知探索:
1、研究倒数的意义
师:请大家看书p27第3行的结语:乘积等于1的两个数叫做互为倒数。
学生自学后,问:有没有疑问?
师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
2、学生自主举例,推敲方法:
(1) 师:下面,请大家各自举例加以说明。
(2) 学生先独立思考,再交流。
(a、 以“真分数”为例;如:5/8的倒数是8/5……真分数的倒数是假分数。)
(b、 以“假分数”为例;8/5的倒数是5/8……假分数的倒数是真分数。)
(c、 以“带分数”为例;带分数的倒数是真分数。)
(d、 以“小数”为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)
(e、 以“整数”为例;整数相当于分母是1的假分数)
学生举例的过程同时将如何寻找倒数的方法也融入其中。
3、讨论“0”、“1”的情况:
1的倒数是1。0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1。0和任何数相乘都得0,不可能是1,所以0没有倒数。)
4、总结方法:(除了0以外)你认为怎样可以很快求出一个数的倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生体会到一种成就感,自己说的居然和书上的意思一样)
三、反馈巩固:
1、完成“练一练”。
学生独立完成后,集体订正。重点问:“8”的倒数是几?
2、练习六5(判断)
3、补充判断:
a、a是自然数,a的倒数是1/a。
倒数的认识教案 篇3
教学目标
1.使学生通过观察、分类、讨论等活动认识倒数,理解倒数的意义。
2.使学生体验找一个数的倒数的方法,会求一个数的倒数。
3.在探索交流的活动中,培养学生观察、归纳、推理和概括的能力,发展数学思维。
教学重点
理解倒数的意义;求一个数的倒数。
教学难点
理解“互为倒数”的含义。
教学准备
教学课件、写算式的卡片。
教学过程
具体内容 修订
基本训练,强化巩固。
(3分钟)
1.出示几道分数乘法式题:(包括教材中的四道题与另外补充的四道结果不为1的算式)。
2.学生独立完成上面几组题,小组内检查并订正。
创设情境,激趣导入。
(2分钟) 请个别学生说说分数乘法的计算方法,突出分子与分母的约分。
提示目标,明确重点。
(1分钟) 通过本节课的学习,我们要认识倒数,理解倒数的意义。会求一个数的倒数。
学生自学,教师巡视。
(6分钟)
1、 观察这些算式,如果将它们分成两类,怎样分?
2.通过观察发现算式的特点。
展示成果,体验成功。
(4分钟) 让学生说说乘积为1的算式有什么特点。
学生讨论,教师点拨。
(8分钟)
1、学生讨论并说出自己的发现:两个数的乘积都是1。相乘的两个数的分子和分母正好颠倒了位置。
2、认识倒数。出示倒数的定义:乘积是1的两个数互为倒数。理解倒数。让学生说一说如何理解“乘积是1的两个数互为倒数”。引导学生对定义中关键要素的理解:乘积是1;两个数;互为倒数。
3.引导学生思考:互为倒数的两个数有什么特点?
4.探讨求倒数方法。
(1)出示例题,让学生说说哪两个数互为倒数。
(2)在汇报时说说怎样找一个数的倒数,在学生汇报的同时板书
倒数的认识教学设计 篇4
教材分析:
这部分内容是在学历了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。这部分内容通过两个例题,主要教学倒数的意义和求倒数的方法。
设计理念:
本课强调从学生的学习兴趣,生活经验和认知水平出发,通过体验、实践、参与、交流和合作方式,让学生在合作学习的过程中,学会交流,相互评价,亲历知识的建构过程。在求一个数的倒数时,让学生先学后教,激发学习热情,并培养学生观察、归纳、推理和概括的能力。
教学目标:
使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
能力目标:
培养学生观察、归纳、猜想、推理和概括的能力。
情感目标:
提供适当的问题情境,激发学生的学习兴趣和学习热情。让学生体验探索中成功的快乐,培养学生的创新意识和科学精神。
教学重点:
使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
教学难点:
使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
教学过程:
一、课前谈话突破难点
1、谈话——蕴含“两个”,突破“互为”
师:老师也愿和六(1)班的同学成为朋友,你们愿意吗?(愿意)那老师就是你们的…(朋友),你们是老师的…(朋友)。你们和老师互为朋友。(指板书:互为)
二、导入揭题,引导质疑
师:其实在我们的数学中也有类似的情况。今天这节课就让我们一起来发现数学中的类似问题。揭题——(板书:倒数的认识)
师:看到“倒数”这个数学新名词,你的脑子里产生哪些问题。
预设:什么是倒数?怎样求倒数?……
这节课一起来探究这些问题?
三、创设活动情景,理解概念——“倒数是什么”
师:我们刚刚研究了分数乘法,老师想了解大家掌握的怎么样?请看计算。
1、在分类中理解“是什么”
①5/8×8/5②0.25×4③3/4+1/4
④1.6—3/5⑤13/7×7/13⑥3/2×6/5×5/9
计算后你有什么发现?
师:如果请你将这六个算式分成两类,你准备怎么分?
(学生汇报:乘积是1。)[适当处板书:乘积是1]
归纳总结:分类的标准不同,得到的答案也不同,今天我们就研究这一类的算式。
师:这三个算式有什么共同的特征吗?
预设:乘积是1。
2、举例感悟“怎么做”
师:你还能举出这样的例子吗?
还能举出与这些算式不同的例子吗?还能举出不同的算式吗?
归纳总结:像刚才举的这些例子,他们都有一个共同的特点!(乘积是1)在数学上“乘积是1的两个数互为倒数”。如5/8×8/5=1,我们就可以说5/8和8/5互为倒数,还可以怎么说?如我们表述朋友的关系。
5/8倒数是8/5,8/5倒数是5/8。
师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
②0.25×4这两个数的关系可以怎么说?请您告诉你的同桌。
(学生活动)
⑤13/7×7/13
3、在思辨中深入理解
师:能说3/4和1/4互为倒数吗?为什么?
师:能说3/2、6/5和5/9互为倒数吗?为什么?
四、运用概念,探究方法——“怎样求倒数”
过渡:大家对倒数理解的很不错,那么我给你一个数你能找出它的倒数吗?
(投影,出示例2)
1、求下面各数的倒数
3/5267/20。610。250
学生尝试。
回报交流。
师:这组数中,你最喜欢求哪些数的倒数?为什么?
预设:
生1:我最喜欢求分数的倒数,因为把分数的分子、分母调换位置,它们的乘积就是1。很容易,所以我喜欢求。
生2:我最喜欢求1的倒数,因为1的倒数可以写成分数,分子、分母调换位置还是,1的倒数就是1。很有趣,所以我喜欢求1的倒数。生:进行计算。
师:这组数中,你最不喜欢哪个数的倒数?
预设:
生1:我最不喜欢求0的倒数,因为0如果写成分数,要是调换分子、分母的位置就是,0不能作分母(0不能作除数)。0好像没有倒数。
生2:再说0乘任何数都等于0,也不等于1呀,0肯定没有倒数。
师:那你是怎样求26的倒数的呢?
你是怎样求一个小数的倒数的呢?
归纳总结:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。
生1:求一个数的倒数,只要把分子分母调换位置。
2、强调书写格式
师:刚才老师看到有学生是这样写的,可以吗?(3/5=5/3)
归纳总结:互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。
先说说下面每组数的倒数,再看看你能发现什么?
(1)3/4的倒数是()(2)9/7的倒数是()
2/5的倒数是()10/3的倒数是()
4/7的倒数是()6/5的倒数是()
(3)1/3的倒数是()(4)3的倒数是()
1/10的倒数是()9的倒数是(
nbsp;1/13的倒数是()14的倒数是()
由学生说出各数的倒数。
师:请你仔细观察,看能从中发现什么,发现得越多越好。
师:小组间可以先互相说一说。
汇报:
预设:
生1:我从第一组中发现真分数的倒数都是假分数。
生2:我从第二组中发现假分数的倒数是真分数或者假分数。
生3:真分数的倒数都小于1,假分数的倒数大于1。
3、填空:
7×()=15/2×()=()×0.25=0.17×()=1