《数学高中教学设计(优秀9篇)》
作为一位杰出的教职工,常常要根据教学需要编写教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。教学设计应该怎么写才好呢?下面是小编精心为大家整理的数学高中教学设计(优秀9篇),希望可以启发、帮助到大家。
高中数学教学设计 篇1
一。教材分析。
( 1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学
( 5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思
想方法,都是学生今后学习和工作中必备的数学素养。
(2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫
二。学情分析。
( 1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。
( 2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。
(3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。
三。教学目标。
根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。
(2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力。
(3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。
四。重点,难点分析。
教学重点:公式的推导、公式的特点和公式的运用。
教学难点:公式的推导方法及公式应用中q与1的关系。
五。教法与学法分析。
培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的。情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而
获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。
六。课堂设计
(一)创设情境,提出问题。(时间设定:3分钟)
[利用投影展示]在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?
[设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性。故事内容紧扣本节课的主题与重点]
提出问题1:同学们,你们知道西萨要的是多少粒小麦吗?
高中数学教学设计 篇2
一、学习目标与任务
1、学习目标描述
知识目标
(A)理解和掌握圆锥曲线的第一定义和第二定义,并能应用第一定义和第二定义来解题。
(B)了解圆锥曲线与现实生活中的联系,并能初步利用圆锥曲线的知识进行知识延伸和知识创新。
能力目标
(A)通过学生的操作和协作探讨,培养学生的实践能力和分析问题、解决问题的能力。
(B)通过知识的再现培养学生的创新能力和创新意识。
(C)专题网站中提供各层次的例题和习题,解决各层次学生的学习过程中的各种的需要,从而培养学生应用知识的能力。
德育目标
让学生体会知识产生的全过程,培养学生运动变化的辩证唯物主义思想。
2、学习内容与学习任务说明
本节课的内容是圆锥曲线的第一定义和圆锥曲线的统一定义,以及利用圆锥曲线的定义来解决轨迹问题和最值问题。
学习重点:圆锥曲线的第一定义和统一定义。
学习难点:圆锥曲线第一定义和统一定义的应用。
明确本课的。重点和难点,以学习任务驱动为方式,以圆锥曲线定义和定义应用为中心,主动操作实验、大胆分析问题和解决问题。
抓住本节课的重点和难点,采取的基于学科专题网站下的三者结合的教学模式,突出重点、突破难点。
充分利用《圆锥曲线》专题网站内的内容,在着重学习内容的基础上,内延外拓,培养学生的创新精神和克服困难的信心。
二、学习者特征分析
(说明学生的学习特点、学习习惯、学习交往特点等)
l本课的学习对象为高二下学期学生,他们经过近两年的高中学习,已经有一定的学习基础和分析问题、解决问题的能力,基本的计算机操作较为熟练。
高二年下学期学生由于高考的压力,他们保持着传统教学的学习习惯,在
l课堂上的主体作用的体现不是太充分,但是如果他们还是乐于尝试、勇于探索的。
高二年的学生在学习交往上“个别化学习”和“协作讨论学习”并存,也就是说学生是具有一定的群体性小组交流能力与协同讨论学习能力的,还是能完成上课时教师布置的协作学习任务的。
三、学习环境选择与学习资源设计
1.学习环境选择(打√)
(1)Web教室(√)(2)局域网(3)城域网(4)校园网(√)(5)Internet(√)
(6)其它
2、学习资源类型(打√)
(1)课件(网络课件)(√)(2)工具(3)专题学习网站(√)(4)多媒体资源库
(5)案例库(6)题库(7)网络课程(8)其它
3、学习资源内容简要说明
(说明名称、网址、主要内容等)
《圆锥曲线专题网站》:从自然与科技、定义与应用、性质与实践和创新与未来四个方面围绕圆锥曲线进行探讨与研究。(IP:192.168.3.134)
用Flash5、几何画板和Authorware6制作可操作且具有交互性的网络课件放在专题网站里。
四、学习情境创设
1、学习情境类型(打√)
(1)真实性情境(√)(2)问题性情境(√)
(3)虚拟性情境(√)(4)其它
2、学习情境设计
真实性情境:用Flash5制作的一系列教学软件。用几何画板制作的《圆锥曲线的统一定义》的教学软件。
问题性情境:圆锥曲线的截取方法、圆锥曲线的各种定义、典型例题。
虚拟性情境:Authorware6制作的《圆锥曲线的截取》,模拟曲线截取。
五、学习活动的组织
1、自主学习设计(打√并填写相关内容)
(1)抛锚式
(2)支架式(√)相应内容:圆锥曲线的第一定义和统一定义。
使用资源:数学教材、专题网站及专题网站下的多媒体教学软件。
学生活动:分析、操作、协作讨论、总结、提交结论。
教师活动:问题的提出。学习资源获取路径的指导。问题解答和咨询。
(3)随机进入式(√)相应内容:圆锥曲线定义的典型应用。
使用资源:轨迹问题、最值问题、其它问题三种典型例题以及各个题目的动画演示和答案。
学生活动:根据自身情况选题、分析题目、协作讨论、解答题目。
教师活动:讲解例题,总结点评学生做题过程中的问题。
(4)其它
2、协作学习设计(打√并填写相关内容)
(1)竞争
(2)伙伴(√)
相应内容:圆锥曲线的第一定义和统一定义
使用资源:数学教材、专题网站及专题网站下的多媒体教学软件。
分组情况:每组三人
学生活动:学生之间对圆锥曲线的定义展开讨论,从而达到对定义的理解和掌握。
教师活动:问题的提出。学习资源获取路径的指导。问题解答和咨询。
(3)协同(√)
相应内容:圆锥曲线定义的典型应用。
使用资源:轨迹问题、最值问题、其它问题三种典型例题以及各个题目的动画演示和答案。
分组情况:每组三人。
学生活动:通过协作讨论区,同学之间互相配合、互相帮助、各种观点互相补充。
教师活动:总结点评学生做题过程中的问题。
(4)辩论
(5)角色扮演
(6)其它
4、教学结构流程的设计
六、学习评价设计
1、测试形式与工具(打√)
(1)堂上提问(√)(2)书面练习(3)达标测试(4)学生自主网上测试(√)(5)合作完成作品(6)其它
2、测试内容
教师堂上提问:圆锥曲线的定义、学生提交的结论的完整性、学生协作讨论时的疑问、例题讲解过程中问题,课堂总结。
学生自主网上测试:解决轨迹问题、最值问题、其它问题三种典型题目。
(附)圆锥曲线专题网站设计分析
(1)设计思路
(A)给学生操作与实践的机会:在每一环节中建设一个可供学生操作的实验平台。
(B)突出教学中“主导和主体”的作用:在每一环节中建设一个可供师生交流的平台。
(C)突出知识的再创新过程和知识的延伸:如圆锥曲线的作法和知识的创新与应用。
(D)强调教学软件的交互性:如在题目中给出提示的动画过程和解答过程。
(E)突出和各学科的联系:如斜抛运动和行星运动等等。
(F)强调分层次的教学:
如在知识应用中的配置不同层次的例题和练习:
(2)网站导航图
高中数学教学设计 篇3
教学准备
教学目标
解三角形及应用举例
教学重难点
解三角形及应用举例
教学过程
一。基础知识精讲
掌握三角形有关的定理
利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题:
(1)已知三边,求三角;
(2)已知两边和它们的'夹角,求第三边和其他两角。
掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题。
二。问题讨论
思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论。
思维点拨::三角形中的三角变换,应灵活运用正、余弦定理。在求值时,要利用三角函数的有关性质。
例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南方向300 km的海面P处,并以20 km / h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60 km,并以10 km / h的速度不断增加,问几小时后该城市开始受到台风的侵袭。
一。 小结:
1.利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);
2.利用余弦定理,可以解决以下两类问题:
(1)已知三边,求三角;
(2)已知两边和它们的夹角,求第三边和其他两角。
3.边角互化是解三角形问题常用的手段。
三。作业:P80闯关训练
高中数学教学设计题模板 篇4
高中数学教学设计——函数的奇偶性
函数的奇偶性是函数的重要性质,是对函数概念的深化。它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称。这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析。教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义。然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例。最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系。这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性。 教学目标
1、通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力。
2、理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性。
3、在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的。 任务分析
这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数 ,(k≠0),二次函数y=ax,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解。在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔。对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数。关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果。 教学设计
一、问题情景
1、观察如下两图,思考并讨论以下问题:
(1)这两个函数图像有什么共同特征?
(2)相应的两个函数值对应表是如何体现这些特征的? 可以看到两个函数的图像都关于y轴对称。从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同。
对于函数f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1)。事实上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x)。此时,称函数y=x2为偶函数。
2、观察函数f(x)=x和f(x)= 的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征。
22可以看到两个函数的图像都关于原点对称。函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x)。此时,称函数y=f(x)为奇函数。
二、建立模型
由上面的分析讨论引导学生建立奇函数、偶函数的定义 1.奇、偶函数的定义
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数。如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数。
2、提出问题,组织学生讨论
(1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗? (f(x)不一定是偶函数)
(2)奇、偶函数的图像有什么特征?
(奇、偶函数的图像分别关于原点、y轴对称) (3)奇、偶函数的定义域有什么特征? (奇、偶函数的定义域关于原点对称)
三、解释应用 [例 题]
1、判断下列函数的奇偶性。
注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1]。
2、已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式。
解:(1)任取x<0,则-x>0,∴f(-x)=-x(1-x),
而f(x)是奇函数,∴f(-x)=-f(x)。∴f(x)=x(1-x)。
(2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3、已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论。
解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下:
任取x1>x2>0,则-x1<-x2<0.
∵f(x)在(-∞,0)上是减函数,∴f(-x1)>f(-x2)。 又f(x)是偶函数,∴f(x1)>f(x2)。
∴f(x)在(0,+∞)上是增函数。
思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?
[练 习]
1、已知:函数f(x)是奇函数,在[a,b]上是增函数(b>a>0),问f(x)在[-b,-a]上的单调性如何。
2.f(x)=-x3|x|的大致图像可能是(
)
3、函数f(x)=ax2+bx+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(x)是偶函数。(2)函数f(x)是奇函数。 4.设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式。
四、拓展延伸
1、有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2.设f(x),g(x)分别是R上的奇函数,偶函数,试研究: (1)F(x)=f(x)·g(x)的奇偶性。 (2)G(x)=|f(x)|+g(x)的奇偶性。
3、已知a∈R,f(x)=a- ,试确定a的值,使f(x)是奇函数。
4、一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?
高中数学教学设计题模板 篇5
教材分析
圆是学生在初中已初步了解了圆的知识及前面学习了直线方程的基础上来进一步学习《圆的标准方程》,它既是前面圆的知识的复习延伸,又是后继学习圆与直线的位置关系奠定了基础。因此,本节课在本章中起着承上启下的重要作用。
教学目标
1、知识与技能:探索并掌握圆的标准方程,能根据方程写出圆的坐标和圆的半径。
2、过程与方法:通过圆的标准方程的学习,掌握求曲线方程的方法,领会数形结合的思想。
3、情感态度与价值观:激发学生学习数学的兴趣,感受学习成功的喜悦。
教学重点难点
以及措施
教学重点:圆的标准方程理解及运用
教学难点:根据不同条件,利用待定系数求圆的标准方程。
根据教学内容的特点及高一年级学生的年龄、认知特征,紧紧抓住课堂知识的结构关系,遵循“直观认知――操作体会――感悟知识特征――应用知识”的认知过程,设计出包括:观察、操作、思考、交流等内容的教学流程。并且充分利用现代化信息技术的教学手段提高教学效率。以此使学生获取知识,给学生独立操作、合作交流的机会。学法上注重让学生参与方程的推导过程,努力拓展学生思维的空间,促其在尝试中发现,讨论中明理,合作中成功,让学生真正体验知识的形成过程。
学习者分析
高一年级的学生从知识层面上已经掌握了圆的相关性质;从能力层面具备了一定的观察、分析和数据处理能力,对数学问题有自己个人的看法;从情感层面上学生思维活跃积极性高,但他们数学应用意识和语言表达的能力还有待加强。
教法设计
问题情境引入法启发式教学法讲授法
学法指导
自主学习法讨论交流法练习巩固法
教学准备
ppt课件导学案
教学环节
教学内容
教师活动
学生活动
设计意图
情景引入
回顾复习
(2分钟)
1、观赏生活中有关圆的图片
2、回顾复习圆的定义,并观看圆的生成flas_。
提问:直线可以用一个方程表示,那么圆可以用一个方程表示吗?
教师创设情景,引领学生感受圆。
教师提出问题。引导学生思考,引出本节主旨。
学生观赏圆的图片和动画,思考如何表示圆的方程。
生活中的图片展示,调动学生学习的积极性,让学生体会到园在日常生活中的广泛应用
自主学习
(5分钟)
1、介绍动点轨迹方程的求解步骤:
(1)建系:在图形中建立适当的坐标系;
(2)设点:用有序实数对(x,y)表示曲线上任意一点M的坐标;
(3)列式:用坐标表示条件P(M)的方程;
(4)化简:对P(M)方程化简到最简形式;
2、学生自主学习圆的方程推导,并完成相应学案内容,
教师介绍求轨迹方程的步骤后,引导学生自学圆的标准方程
自主学习课本中圆的标准方程的推导过程,并完成导学案的内容,并当堂展示。
培养学生自主学习,获取知识的能力
合作探究(10分钟)
1、根据圆的标准方程说明确定圆的方程的条件有哪些?
2、点M(x0,y0)与圆(x-a)2+(y-b)2=r2的关系的判断方法:
(1)点在圆上
(2)点在圆外
(3)点在圆内
教师引导学生分组探讨,从旁巡视指导学生在自学和探讨中遇到的问题,并鼓励学生以小组为单位展示探究成果。
学生展开合作性的探讨,并陈述自己的研究成果。
通过合作探究和自我的展示,鼓励学生合作学习的品质
当堂训练(18分钟)
1、求下列圆的圆心坐标和半径
C1:x2+y2=5
C2:(x-3)2+y2=4
C3:x2+(y+1)2=a2(a≠0)
2、以C(4,-6)为圆心,半径等于3的圆的标准方程
3、设圆(x-a)2+(y-b)2=r2
则坐标原点的位置是()
A.在圆外B.在圆上
C.在圆内D.与a的取值有关
4、写出下列各圆的标准方程(1)圆心在原点,半径等于5
(2)经过点P(5,1),圆心在点C(6,-2);
(3)以A(2,5),B(0,-1)为直径的圆。
5、下列方程分别表示什么图形
(1)x2+y2=0
(2)(x-1)2=8-(y+2)2
(3)《圆的标准方程》教学设计-贾伟
6、巩固提升:已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心在直线l:x-y+1=0上,求圆C的标准方程并作图
指导学生就不同条件下给出的圆心和半径关系,求解圆的标准方程这两个要素展开训练。
学生自主开展训练,并纠正学习中所遇到的问题
巩固所学知识,并查缺补漏。
回顾小结
(1分钟)
1、你学到了哪些知识?
2、你掌握了哪些技能?
3、你体会到了哪些数学思想?
采用提问的形式帮助学生回顾和分析本节所学。
学生思考并从知识、技能和思想方法上回顾总结。
培养学生归纳总结能力
作业布置
(1分钟)
课本87页习题2-2
A组的第1道题
布置训练任务
标记并完成相应的任务
检测学生掌握知识情况。
本节教学主要遵循“回-导-学-展-讲-练-结”的高效课堂教学模式,遵循学生学习的主体地位,鼓励学生自主思考和探讨。
教学中要积极鼓励学生多思考总结,在判断点与圆的位置关系中,要遵从学生个性化的发展思路,鼓励学生创造性的解决问题。
高中数学优秀教学设计 篇6
一、探究式教学模式概述
1、探究式教学模式的含义。探究式教学就是学生在教师引导下,像科学家发现真理那样以类似科学探究的方式来展开学习活动,通过自己大脑的独立思考和探究,去弄清事物发展变化的起因和内在联系,从中探索出知识规律的教学模式。它的基本特征是教师不把跟教学内容有关的内容和认知策略直接告诉学生,而是创造一种适宜的认知和合作环境,让学生通过探究形成认知策略,从而对教学目标进行一种全方位的学习,实现学生从被动学习到主动学习,培养学生的科学探究能力、创新意识和科学精神。可见,探究式教学主张把学习知识的过程和探究知识的过程统一起来,充分发挥学生学习的自主性和参与性。
2、堂探究式教学的实质。课堂探究式教学的实质是使学生通过类似科学家科学探究的过程来理解科学探究概念和科学规律的本质,并培养学生的科学探究能力。具体地说,它包括两个相互联系的方面:一是有一个以“学”为中心的探究性学习环境。在这个环境中有丰富的教学资源,而且这些资源是围绕某个知识主题来展开的。这个学习环境具有民主和谐的课堂气氛,它使学生很少感到有压力,能自主寻找所需要的信息,提出自己的设想,并以自己的方式检验其设想。二是教师可以给学生提供必要的帮助和指导,使学生在研究中能明确方向。这说明探究式教学的本质特征是不直接把与教学目标有关的概念和认知策略告诉学生,取而代之的是教师创造出一种智力交流和社会交往的环境,让学生通过探究自己发现规律。
3、探究式教学模式的特征。
(1)问题性。问题性是探究式教学模式的关键。能否提出对学生具有挑战性和吸引力的问题,使学生产生问题意识,是探究教学成功与否的关键所在。恰当的问题会激起学生强烈的学习愿望,并引发学生的求异思维和创造思维。现代教育心理学研究提出:“学生的学习过程和科学家的探索过程在本质上是一样的,都是一个发现问题、分析问题、解决问题的过程。”所以培养学生的问题意识是探究式教学的重要使命。
(2)过程性。过程性是探究式教学模式的重点。爱因斯坦说:“结论总以完成的形式出现,读者体会不到探索和发现的喜悦,感觉不到思想形成的生动过程,也就很难达到清楚、全面理解的境界。”探究式教学模式正是考虑到这些人的认知特点来组织教学的,它强调学生探索知识的经历和获得新知识的亲身感悟。
(3)开放性。开放性是探究式教学模式的难点。探究式教学模式总是综合合作学习、发现学习、自主学习等学习方式的长处,培养学生良好的学习态度和学习方法,提倡和发展多样化的学习方式。探究式教学模式要面对大量开放性的问题,教学资源和探究的结论面对生活、生产和科研是开放的,这一切都为教师的教与学生的学带来了机遇与挑战。
二、教学设计案例
1、教学内容:数字排列中3、9的探究式教学。
2、教学目标。
(1)知识与技能:掌握数字排列的知识,能灵活运用所学知识。
(2)过程与方法:在探究过程中掌握分析问题的方法和逻辑推理的方法。
(3)情感态度与价值观:培养学生观察、分析、推理、归纳等综合能力,让学生体会到认识客观规律的一般过程。
3、教学方法:谈话探究法,讨论探究法。
4、教学过程。
(1)创设情境。教师:在高中数学第十章的教学中,有关数字排列的问题占有重要位置。我们曾经做过的有关数字排列的题目,如“由若干个数字排列成偶数”、“能被5整除的数”等问题,只要使排列成的数的个位数字为偶数,则这个数就是偶数,当排列成的数的个位数字为0或5时,则这个数就能被5整除。那么能被3整除的数,能被9整除的数有何特点?
(2)提出问题。
问题1:在用1、2、3、4、5、6六个数字组成没有重复数字的四位数中,是9的倍数的共有()
A、36个B、18个C、12个D、24个
问题2:在用0、1、2、3、4、5这六个数字组成没有重复数字的自然数中,有多少个能被6整除的五位数?
(3)探究思考。点评:乍一看问题1,对于由若干个数字排列成9的倍数的问题,如:81、72、63、54、45、36、27、18、9这些能够被9整除的数的个位数字依次是1、2、3、4、5、6、7、8、9。因此,要考察能被9整除的数,不能只考虑个位数字了。于是,需另辟蹊径,探究能被9整除的数的特点,寻求解决问题的途径。
教师:同学们观察81、72、63、54、45、36、27、18、9这些数,甚至再写出几个能被9整除的数,如981、1872等,看看它们有何特点?
学生:它们都满足“各位数字之和能被9整除”。
教师:此结论的正确性如何?
学生:老师,我们证明此结论的正确性,好吗?
教师:好。
学生:证明:不妨以n是一个四位数为例证之。
设n=1000a+100b+10c+d(a,b,c,d∈N)依条件,有a+b+c+d=9m(m∈N)
则n=1000a+100b+10c+d
=(999a+a)+(99b+b)+(9c+c)+d
=(999a+99b+9c)+(a+b+c+d)
=9(111a+11b+c)+9m
=9(111a+11b+c+m)
∵ a,b,c,m∈N
∴ 111a+11b+c+m∈N
所以n能被9整除
同理可证定理的后半部分。
教师:看来上述结论正确。所以得到如下定理。
定理:如果一个自然数n各个数位上的数字之和能被9整除,那么这个数n就能够被9整除;如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。
教师:利用该定理可解决“能被3、9整除”的数字排列问题,请同学们先解答问题1。
学生:尝试1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。
教师:启发学生观察这些数字有何特点?提问学生。
学生:可以看出只要从1、2、3、4、5、6这六个数中,选取的四个数字中含1(或2),或者同时含1、2,选取的四个数字之和都不是9的倍数。
教师:请学生们继续尝试选取其他数字试一试。
学生:3+4+5+6=18是9的倍数。
教师:因此用1、2、3、4、5、6六个数字组成没有重复数字的四位数中,是9的倍数的数,就是由3、4、5、6进行全排列所得,共有=24(个)。
故应选D。
(4)学以致用。
问题2:在用0、1、2、3、4、5这六个数字组成没有重复数字的自然数中,有多少个能被6整除的五位数?
教师:从上面的定理知:如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。同学们对问题2有何想法?
学生讨论:
学生1:被6整除的。五位数必须既能被2整除,又能被3整除,故能被6整除的五位数,即为各位数字之和能被3整除的五位偶数。
学生2:由于1+2+3+4+5=15,能被3整除,所以选取的5个数字可分两类:一类是5个数字中无0,另一类是5个数字中有0(但不含3)。
学生3:第一类:5个数字中无0的五位偶数有。
第二类:5个数字中含有0不含3的五位偶数有两类,第一,0在个位有个;第二,个位是2或4有,所以共有+ 。
学生4:由分类计数原理得:能被6整除的无重复数字的五位数共有+ + =108(个)。
(5)概括强化。
重点:了解数字排列问题的特点,理解掌握数字排列中3、9问题的规律。
难点:数字排列知识的灵活应用。
关键:证明的思路以及定理的得出。
新学知识与已知知识之间的区别和联系:已知知识“由若干个数字排列成偶数”、“能被5整除的数”等问题,只要使排列成的数的个位数字为偶数,则这个数就是偶数,当排列成的数的个位数字为0或5时,则这个数就能被5整除”。新学知识“如果一个自然数n各个数位上的数字之和能被9整除,那么这个数n就能够被9整除;如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。都是数字排列知识,要学会灵活应用。
(6)作业。请同学们自拟练习题,以求达到熟练解决此类问题的目的。
总之,探究式教学模式是针对传统教学的种种弊端提出来的,新课程改革强调改变课程过于注重知识的传授和过于强调接受式学习的状况,倡导学生主动参与乐于探究、勤于动手,让学生经历科学探究过程,学习科学研究方法,并强调获得知识、技能的过程成为学会学习和形成价值观的过程,以培养学生的探究精神、创新意识和实践能力。
高中数学单元教学设计 篇7
教学目标
(1)理解四种命题的概念;
(2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;
(3)理解一个命题的真假与其他三个命题真假间的关系;
(4)初步掌握反证法的概念及反证法证题的基本步骤;
(5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;
(6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;
(7)培养学生用反证法简单推理的技能,从而发展学生的思维能力。
教学重点和难点
重点:四种命题之间的关系;难点:反证法的运用。
教学过程设计
第一课时:四种命题
一、导入新课
【练习】
1.把下列命题改写成“若p则q”的形式:
(l)同位角相等,两直线平行;
(2)正方形的四条边相等。
2.什么叫互逆命题?上述命题的 …逆命题是什么?
将命题写成“若p则q”的形式,关键是找到命题的条件p与q结论。
如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题。
上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”。
值得指出的是原命题和逆命题是相对的。我们也可以把逆命题当成原命题,去求它的逆命题。
3.原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真。但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真。
学生活动:
口答:
(1)若同位角相等,则两直线平行;
(2)若一个四边形是正方形,则它的四条边相等。
设计意图:
通过复习旧知识,打下学习否命题、逆否命题的基础。
二、新课
【设问】命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?
【讲述】可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题。
【提问】你能由原命题“正方形的四条边相等”构成它的否命题吗?
学生活动:
口答:若一个四边形不是正方形,则它的四条边不相等。
教师活动:
【讲述】一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题。把其中一个命题叫做原命题,另一个命题叫做原命题的否命题。
若用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定。
【板书】原命题:若p则q;
否命题:若┐p则q┐。
【提问】原命题真,否命题一定真吗?举例说明?
学生活动:
讲论后回答:
原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真。
原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真。
由此可以得原命题真,它的否命题不一定真。
设计意图:
通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的真假,调动学生学习的积极性。
教师活动:
【提问】命题“同位角相等,两条直线平行”除了能构成它的逆命题和否命题外,还可以不可以构成别的命题?
学生活动:
讨论后回答
【总结】可以将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不平行,则同位角不相等”,这个命题叫原命题的逆否命题。
教师活动:
【提问】原命题“正方形的四条边相等”的逆否命题是什么?
学生活动:
口答:若一个四边形的四条边不相等,则不是正方形。
教师活动:
【讲述】一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题。把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题。
原命题是“若 p则 q ”,则逆否命题为“若┐q 则┐p 。
【提问】“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?
学生活动:
讨论后回答
这两个逆否命题都真。
原命题真,逆否命题也真。
教师活动:
【提问】原命题的真假与其他三种命题的真
假有什么关系?举例加以说明?
【总结】
1.原命题为真,它的逆命题不一定为真。
2.原命题为真,它的否命题不一定为真。
3.原命题为真,它的逆否命题一定为真。
设计意图:
通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性。
教师活动:
三、课堂练习
1.若原命题是“若p则q”,其它三种命题的形式怎样表示?请写在方框内?
学生活动:笔答
教师活动:
2.根据上图所给出的箭头,写出箭头两头命题之间的关系?举例加以说明?
学生活动:讨论后回答
设计意图:
通过学生自己填图,使学生掌握四种命题的形式和它们之间的关系。
教师活动:
高中数学教学设计 篇8
教学目标
(1)理解四种命题的概念;
(2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;
(3)理解一个命题的真假与其他三个命题真假间的关系;
(4)初步掌握反证法的概念及反证法证题的基本步骤;
(5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;
(6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;
(7)培养学生用反证法简单推理的技能,从而发展学生的思维能力、
教学重点和难点
重点:四种命题之间的关系;难点:反证法的运用、
教学过程设计
第一课时:四种命题
一、导入新课
【练习】1、把下列命题改写成“若p则q”的形式:
(l)同位角相等,两直线平行;
(2)正方形的四条边相等、
2、什么叫互逆命题?上述命题的逆命题是什么?
将命题写成“若p则q”的形式,关键是找到命题的'条件p与q结论、
如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题、
上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”、
值得指出的是原命题和逆命题是相对的、我们也可以把逆命题当成原命题,去求它的逆命题、
3、原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真、但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真、
学生活动:
口答:
(1)若同位角相等,则两直线平行;
(2)若一个四边形是正方形,则它的四条边相等、
设计意图:
通过复习旧知识,打下学习否命题、逆否命题的基础、
二、新课
【设问】命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?
【讲述】可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题、
【提问】你能由原命题“正方形的四条边相等”构成它的否命题吗?
学生活动:
口答:若一个四边形不是正方形,则它的四条边不相等、
教师活动:
【讲述】一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题、把其中一个命题叫做原命题,另一个命题叫做原命题的否命题、
若用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定、
【板书】原命题:若p则q;
否命题:若┐p则q┐、
【提问】原命题真,否命题一定真吗?举例说明?
学生活动:
讲论后回答:
原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真、
原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真、
由此可以得原命题真,它的否命题不一定真、
设计意图:
通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的真假,调动学生学习的积极性、
教师活动:
【提问】命题“同位角相等,两条直线平行”除了能构成它的逆命题和否命题外,还可以不可以构成别的命题?
学生活动:
讨论后回答
【总结】可以将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不平行,则同位角不相等”,这个命题叫原命题的逆否命题、
教师活动:
【提问】原命题“正方形的四条边相等”的逆否命题是什么?
学生活动:
口答:若一个四边形的四条边不相等,则不是正方形、
教师活动:
【讲述】一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题、把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题、
原命题是“若p则q”,则逆否命题为“若┐q则┐p、
【提问】“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?
学生活动:
讨论后回答
这两个逆否命题都真、
原命题真,逆否命题也真、
教师活动:
【提问】原命题的真假与其他三种命题的真
假有什么关系?举例加以说明?
【总结】1、原命题为真,它的逆命题不一定为真、
2、原命题为真,它的否命题不一定为真、
3、原命题为真,它的逆否命题一定为真、
设计意图:
通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性、
教师活动:
三、课堂练习
1、若原命题是“若p则q”,其它三种命题的形式怎样表示?请写在方框内?
学生活动:笔答
教师活动:
2、根据上图所给出的箭头,写出箭头两头命题之间的关系?举例加以说明?
学生活动:讨论后回答
设计意图:
通过学生自己填图,使学生掌握四种命题的形式和它们之间的关系、
教师活动:
略。
数学高中教学设计 篇9
教学目标:
(1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化
(2)理解直线与二元一次方程的关系及其证明
(3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点
教学重点、难点:直线方程的一般式。直线与二元一次方程(不同时为0)的对应关系及其证明
教学用具:计算机
教学方法:启发引导法,讨论法
教学过程:
下面给出教学实施过程设计的简要思路:
教学设计思路:
(一)引入的设计
前边学习了如何根据所给条件求出直线方程的方法,看下面问题:
问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是,属于二元一次方程,因为未知数有两个,它们的最高次数为一次。
肯定学生回答,并纠正学生中不规范的表述。再看一个问题:
问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次。
肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”。
启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论。
学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:
【问题1】“任意直线的方程都是二元一次方程吗?”
(二)本节主体内容教学的设计
这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路。
学生或独立研究,或合作研究,教师巡视指导。
经过一定时间的研究,教师组织开展集体讨论。首先让学生陈述解决思路或解决方案:
思路一:…
思路二:…
教师组织评价,确定最优方案(其它待课下研究)如下:
按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在。
当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程。
当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?
学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:
平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。
综合两种情况,我们得出如下结论:
在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于、的二元一次方程。
至此,我们的问题1就解决了。简单点说就是:直线方程都是二元一次方程。而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”。
同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?
学生们不难得出:二者可以概括为统一的形式。
这样上边的结论可以表述如下:
在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程。
启发:任何一条直线都有这种形式的方程。你是否觉得还有什么与之相关的问题呢?
【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?
不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面。这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论。那么如何研究呢?
师生共同讨论,评价不同思路,达成共识:
回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程(其中、不同时为0)系数是否为0恰好对应斜率是否存在,即
(1)当时,方程可化为
这是表示斜率为、在轴上的截距为的直线。
(2)当时,由于、不同时为0,必有,方程可化为
这表示一条与轴垂直的直线。
因此,得到结论:
在平面直角坐标系中,任何形如(其中不同时为0)的二元一次方程都表示一条直线。
为方便,我们把(其中不同时为0)称作直线方程的一般式是合理。
【动画演示】
演示“直线各参数”文件,体会任何二元一次方程都表示一条直线。
至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系。
(三)练习巩固、总结提高、板书和作业等环节的设计