首页 > 教学教案 > 教案大全 > 教学设计 > 三角形内角和教学设计(最新10篇)正文

《三角形内角和教学设计(最新10篇)》

时间:

《三角形内角和》教学设计(精选18篇)下面是小编精心为大家整理的三角形内角和教学设计(最新10篇),希望能够帮助到大家。

角形内角和教学设计 篇1

【教材分析】

《三角形内角和》是北师大版《数学》四年级下册的内容。是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。教材还安排了“试一试”,“练一练”的内容。已知三角形两个内角的度数,求出第三个角的度数。

【学生分析】

经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。1、知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。2.能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的微机操作。

【学习目标】

知识目标:掌握三角形内角和是180度这一规律,并能实际应用。

能力目标:培养学生主动探索、动手操作的能力。培养学生收集、整理、归纳信息的能力。使学生养成良好的合作习惯。

情感目标:让学生体会几何图形内在的结构美。

【教学过程】

一、情景激趣,质疑猜想。

播放动画片:在图形王国中,有一天三角形大家庭里为“三角形内角和的大小”爆发了一场激烈的争吵。

钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“我的锐角虽然比钝角小,但我的内角和并不比你小。”直角三角形说:“别争了,三角形的内角和都是180°。我们的内角和是一样大的。”

师:想一想,什么是三角形的三个内角的和。

生:三角形的三个内角的度数和。

师:同学们刚才看了动画片你们知道谁说对了吗?不知道的话想一想,猜一猜谁说的对?

学生进行猜想,自由发言。

(设计意图:教师借助多媒体技术创设问题情境,架起数学学习与现实生活,抽象数学与具体问题之间的桥梁,激发了学生的学习兴趣。鼓励学生主动质疑猜想是培养学生学会学习的重要途径。)

二、自主探究,验证猜想

师:刚才大部分同学都猜直角三角形说的对。三角形的三个内角的和都是180°,你能设法验证这个猜想吗?

生1:能。我量出三角形的三个内角和度数,加起来是否接近180°(量的时候可能会有些误差)。

生2:我把三角形的三个角剪下来拼一拼是否能拼成一个平角。

生3:我把三角形的三个角撕下来,拼一拼是否180°。

生4:我把三角形的三个角往里折,看一看这三个角是否折成一个平角。

……

师:上面你们说了不少的验证猜想的方法,请大家用准备好的材料用你喜欢的方法,动手验证自己的猜想吧!(学生把三角形的三个内角分别标上∠1、∠2、∠3,以免在剪拼时把内角搞混了。)

学生边实验边整理信息,完成实验报告单后,学习小组内进行交流讨论。

(设计意图:验证猜想为学生提供了“做数学”的机会,让每个学生围绕自己的猜想、决定自己的探索方向、选择自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,让学生在操作中自主探究数学知识的产生发展过程。验证自己的猜想,鼓励学生用不同的方法进行验证,促进学生创新能力的发展。)

三、交流评价,归纳结论。

学生操作验证,完成实验报告单后,利用投影仪展示学生填写的实验报告单。

实验报告单

实验名称

三角形内角和

实验目的

探究三角形内角和是多少度。

实验材料

尺子

剪刀

量角器

锐角三角形纸片

直角三角形纸片

钝角三角形纸片

我的方法

我的发现

我的表现

自评

互评

学生在展示过程中,充分交流和讨论实验中各自使用的方法和发现,教师要对学生的闪光点及时进行表扬和鼓励。

师生共同归纳,得出结论:

三角形内角和等于180°

(设计意图:各学习小组汇报自己的验证过程,展示探究的成果。对学生探索发现的方法、策略进行总结归纳,集思广益,取长补短达到共识。在交流、归纳过程中,及时肯定其中的闪光点给予表扬和鼓励,使他们体验到成功的'愉悦,促使他们获得更大的成功。)

四、分层练习,巩固创新。

①课件出示:

师:这个三角形是什么三角形?知道几个内角的度数?

生:直角三角形,知道一个角是30°,还有一个角是90°。∠A=90°-30°=60°。

师:根据今天所学的知识,谁能求出A的度数?大家自己试一试。

学生做完后反馈讲评时让学生说说自己的方法。

生1:用三角形内角的和(180°)减去30°再减去90°,算出∠A是60°。

∠A=180°-30°-90°=60°。

生2:先用30°加上90°得120°再用180°减去120°也可得∠A=60°。

②学生完成完成P29的第一题。

引导学生按照前面的方法独立完成,教师巡视,集体订正。

③猜一猜三角形的另外两个角可能各是多少度。

同桌同学互相说一说。(答案不唯一)

④小组操作探究活动。

让学生剪出几个不同的四边形,按表中所给的方法以做一做,并填一填。

方法

四边形内角和

用量角器量出每个内角的度数,并相加。

把四边形四个角剪下来,拼在一起。

把四边形分为两个三角形。

填表后让学生想一想、互相说一说,四边形内角和是多少度?

(设计意图:引导学生将探究学习活动中所获得的结论经验和方法运用于探索解决简单的实际问题。组织学生参与具有趣味性、操作性和开放性的练习活动,让学生在巩固练习中培养动手能力、实践能力和创新思维。)

角形内角和教学教案设计 篇2

【教学内容】

新课标人教版四年级下册第五单元《三角形》

【教材分析】

“三角形内角和”这节课是新课标人教版四年级下册第五单元的教学内容,是在学生学习了三角形的概念及特征之后进行的。教材先给出了量这一思路,继而让学生探索验证三角形内角和是180度这一观点。在活动过程中,先通过“画一画、量一量”,产生初步的发现和猜想,再“拼一拼、折一折”,引导学生对已有猜想进行验证,经历提出猜想——进行验证的的过程,渗透数学学习方法和思想。

【学生分析】

学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道“三角形的内角和是180度”的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。

【学习目标】

1.学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。

2.在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

3.体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

【教学过程】

一、创设情境,发现问题

1、魔术导入:把长方形的纸剪两刀,怎样拼成一个三角形?

2、你知道三角形的那些知识?(复习)

3、小游戏:猜一猜藏在信封后面的是什么三角形。

师:我们在猜三角形的时候,看到一个直角,就能断定它一定是直角三角形;看到一个钝角,就能断定他一定是钝角三角形;但只看到一个锐角,就判断不出来是哪种三角形。看来在一个三角形中,只能有一个直角或一个钝角,为什么画不出有两个直角或两个钝角的三角形呢?

三角形的这三个角究竟存在什么奥秘呢,我们一起来研究研究。

(创设的不是生活中的情境,而是数学化的情境。有的孩子认为一个三角形中可能会有两个钝角,还有的提出等边三角形中可能会有直角,这两个问题显现出学生在认知上的矛盾,学生用已经学的三角形的特征只能解释“不能是这样”,而不能解释“为什么不能是这样”。这样引入问题恰好可以利用学生的这种认知冲突,激发学生的学习兴趣。)

二、引导探究,解决问题

1.介绍内角、内角和

师:我们现在研究三角形的三个角,都是它的内角,以后到了初中,还会接触三角形的外角。看老师手里的三角形,关于它的三个内角,除了我们已经掌握的知识外,你还知道哪方面的知识?谁能说一说三角形的内角和指的是什么?

已经知道三角形的内角和是多少的同学,可以把它写在本上。不知道的同学想一想,计量内角和的单位是度,可以估计一下,各种各样的三角形的内角和是不是一个固定的数,有可能会是多少度,把你的猜想也写在本上。

我们这节课就来一起探究用哪些方法能知道三角形的内角和。

2.确定研究范围(预设约3-5分)

师:研究三角形的内角和,是不是应该包括所有的三角形?只研究黑板上这一个行不行?那就随便画,挨个研究吧。(学生反对)

请你想个办法吧!

(通过引导学生分析,“研究哪几类三角形,就能代表所有的三角形”这个问题,来渗透研究问题要全面,也就是完全归纳法的数学思想)

3.动手操作实践(预设约8-10分)

同桌组成学习小组,拿出课前制作的各种各样的三角形,先找到三个内角,把每个角标上序号。老师提出要求:先试着研究自己的三角形,然后再共同研究小组里其他同学的三角形,看看各种三角形内角和是不是一样的。(学生动手操作试验,在小组中讨论问题)

(为了满足学生的探究欲望,发挥学生的主观能动性,我在设计学具的时候,想了几个不同的方案,最后决定课前让学生在学习小组里分工合作制作各种不同的三角形,课上就让学生就用自己制作的三角形,通过独立探究和组内交流,实现对多种方法的体验和感悟。)

4.汇报交流(预设约15-20分)

(1)测量的方法

学生汇报量的方法,师请同学评价这种方法。

师小结:直接量的方法挺好,虽然测量有误差,不准,但我们能知道,三角形的内角和只能在180°左右,究竟是不是一定就是180度呢,谁还有别的方法?

(2)剪拼的方法

学生汇报后师小结:能想到这个方法不简单,拼成的看起来像平角,到底是不是平角呢,我们一起来试试看。(教师和学生剪一剪、拼一拼)

师:把三角形的三个内角凑到了一起,拼成了一个大角,角的两条边是不是在一条直线上呢?看起来挺象的,但在操作的过程中难免会产生误差,有时会差一点点,谁还有别的方法确定三角形的内角和一定是180°?

(3)折拼的方法

学生汇报后师小结:我们要研究三角形的内角和,实际上就是想办法把三角形的三个内角凑到一起,像剪和折的方法,看三个内角拼到一起是不是180度,都是借助我们学过的平角解决的问题。

这三种方法都不错,在操作的过程中,有时会有误差,不太有说服力。想一想,你还能不能借助我们学过的哪种图形,想办法说明三角形的内角和一定是180度?

(4)演绎推理的方法

(借助学过的长方形,把一个长方形沿对角线分成两个三角形。)

师:你认为这种方法好不好?我们看看是不是这么回事。

师小结:这种方法避免了在剪拼过程中由于操作出现的误差,非常准确的说明了三角形的内角和一定是180度。

(学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。)

学生用的方法会非常多,怎样对这些方法进行引导,是值得思考的问题。这些方法的思维水平不应该是平行的:直接测量的方法是学生利用已有的知识,测量出每个角的度数,再用加法求和;拼角求和法,也就是间接剪拼和折拼这两种方法,都是通过拼成一个特殊角,也就是平角来解决问题;而演绎推理,即把两个完全相同的三角形合二为一,或把长方形一分为二,成为两个三角形,这是更深层次的思考,是一种批判的思维。前两种方法是不完全归纳法,能使我们确定研究的范围只能是180度左右,而不可能是其他任意猜想的度数。最后一种方法具有演绎推理的色彩,把一个长方形沿对角线分成两个完全相同的三角形后,因为两个三角形的内角和是原来长方形的四个内角之和360度,所以一个三角形的内角和就是360°÷2=180°,这种方法从科学证明的角度阐述了三角形的内角和,它有严密性和精确性。基于以上的想法,我觉得在课上不能停留在学生对方法的描述上,而应引导学生经历从直观到抽象、思维程度从低到高的过程,感悟数学的严谨性。所以在最后一个环节中,教师向全班同学推荐这种分的方法,大家一起来做一做,不要求全体都掌握,就想起到引导和点拨的作用。学生在经历量和拼之后,逐渐会在思维发散的过程中得到集中,集中为分的方法,最后将四边形一分为二,五边形一分为三,六边形一分为四……,又会发现一些新的规律。】

5.验证猜想

请学生把刚才研究的三角形举起来,分别是锐角三角形、直角三角形、钝角三角形,这三类的三角形内角和都是180度,那就可以说,所有的三角形的内角和都是180度。

这个结论和课前刚才知道的或猜的一样吗?

(在很多同学都知道三角形内角和的情况下,要引导学生领悟有了猜测还要去验证,这是一种科学的研究问题的方法,是一种求实精神。)

6.解释课前问题

用内角和的知识解释课前的问题,为什么在三角形中不能有两个直角或钝角。

三、拓展应用,深化创新

1.介绍科学家帕斯卡(出示帕斯卡的资料)

师:帕斯卡为科学作出了巨大的贡献,在我们以后学习的知识中,也有很多是帕斯卡发现和验证的,他12岁就发现三角形内角和是180度,我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。

2.四边形内角和及多边形内角和(幻灯片)

你打算用哪种方法知道四边形的内角和?

你觉得哪种方法更好?

(设计求四边形的内角和,是把这个新问题转化归结为求几个三角形内角和的问题上,渗透化归的数学学习方法。)

3.总结

我们把四边形一分为二,用三角形内角和的知识知道了四边形内角和,那么五边形、六边形……这些多边形的内角和是多少度?有没有什么规律可循,希望同学们能用学到的知识和方法去探究问题,你还会有一些精彩的发现。

最新《三角形的内角和》教学设计 篇3

总课时数:

第15课时

教学目标:

1、让学生通过观察、操作、比较、归纳,发现“三角形的内角和是180°”。

2、让学生学会根据“三角形的内角和是180°”这一知识求三角形中一个未知角的度数。

3、激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。

教学重点:

探索三角形内角和是180°

教学难点:探索三角形内角和是180°

教学准备:三角板,量角器、点子图、自制的三种三角形纸片等。

教学过程:

一、交流展示

老师取一块三角板,让学生分别说说这三个角的度数,再加一加,分别得到这样的2个算式:90°+60°+30°=180°,90°+45°+45°=180°

看了这2个算式你有什么猜想?

(三角形的三个角加起来等于180度)

二、自主探索

1、画、量:在点子图上,分别画锐角三角形、直角三角形、钝角三角形。画好后分别量出各个角的度数,再把三个角的度数相加。

老师注意巡视和指导。交流各自加得的结果,说说你的发现。

2、折、拼:学生用自己事先剪好的图形,折一折。

指名介绍折的方法:比如折的是一个锐角三角形,可以先把它上面的一个角折下,顶点和下面的边重合,再分别把左边、右边的角往里折,三个角的顶点要重合。发现:三个角会正好在一直线上,说明它们合起来是一个平角,也就是180度。

继续用该方法折钝角三角形,得到同样的结果。

直角三角形的折法有不同吗?

通过交流使学生明白:除了用刚才的方法之外,直角三角形还可以用更简便的方法折;可以直角不动,而把两个锐角折下,正好能拼成一个直角;两个直角的度数和也是180度。

3、撕、拼:可能有个别学生对折的方法感到有困难。那么还可以用撕的方法。在撕之前要分别在三个角上标好角1.角2和角3。然后撕下三个角,把三个角的一条边、顶点重合,也能清楚地看到三个角合起来就是一个平角——180度。

小结:我们可以用多种方法,得到同样的结果:三角形的内角和是180°。

三、精讲点拔

三角形中,角1=75°,角2=39°,角3=()°

算一算,量一量,结果相同吗?

四、运用提升

1、算出下面每个三角形中未知角的度数。

在交流的时候可以分别学生说说怎么算才更方便。比如第1题,可先算40加60等于100,再用180减100等于80°。第2题则先算180减110等于70,再用70减55更方便。第3题是直角三角形,可不用180去减,而用90减55更好。

指出:在计算的时候,我们可根据具体的数据选择更佳的算法。

2、一块三角尺的内角和是180°,用两块完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?

可先猜想:两个三角形拼在一起,会不会它的内角和变成180×2=360°呢?为什么?

然后再分别算一算图上的这三个三角形的内角和。得出结论:三角形不论大小,它的内角和都是180°。

3、用一张正方形纸折一折,填一填。

4、说理:一个直角三角形中最多有几个直角?为什么?

一个钝角三角形中最多有几个直角?为什么?

五、达标作业

补充习题相关作业

角形内角和教学设计 篇4

一、教学目标:

1、理解掌握三角形内角和是180°,并运用这一性质解决一些简单的问题。

2、通过直观操作的方法,引导学生探索并发现三角形内角和等于180°,在实验活动中,体验探索的过程和方法。

3、在探索和发现三角形内角和的过程中获得成功的体验。

二、教学重、难点:

重点:探索并发现三角形内角和等于180°。

难点:运用三角形内角和等于180°的性质解决一些实际问题。

教具:课件、三角形若干。

学具:量角器、直角三角形、锐角三角形和钝角三角形各一个。

三、教学过程

(一)创设情境,导入新课

我们已经学过了三角形的知识,我们来复习一下,看看大屏幕,各是什么三角形?谁能说说什么是锐角三角形、直角三角形、钝角三角形?追问:不管是什么三角形它们都有几个角呢?这三个角都叫做三角形的内角,而这三个内角的和就是这个三角形的内角和。那么谁来说一说什么是三角形的内角和?三角形有大有小,形状也各不相同,那么它们的内角和有没有什么特点和规律呢?我们来看一个小片段,仔细听它们都说了什么?

教师放课件。

课件内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”

都听清它们在争论什么吗?(它们在争论谁的内角和大。)谁能说一说你的想法?(学生各抒己见,是不评价)果真是这样吗?下面我们就来研究“三角形内角和”。

(板书课题:三角形内角和)

(二)自主探究,发现规律

1、探究三角形内角和的特点。

(1)检查作业,并提出要求:

昨天老师让每位学生都分别剪出了锐角三角形、直角三角形和钝角三角形,并量出了每个角的度数,都完成了吗?拿出来吧,一会我们要算出三角形的内角和填在下面的表格里。我们来看一下表格以及要求。出示小组活动记录表。

小组活动记录表

小组成员的姓名

三角形的形状

每个内角的度数

三角形内角的和

(要求:填完表后,请小组成员仔细观察你发现了什么?)

②小组合作。

会使用表格了吗?下面我们就以小组为单位,按照要求把结果填在小组长手中的表格内。

各组长进行汇报。发现了三角形的内角和都是180°左右。

师:实际上,三角形三个内角和就是180°,只是因为测量有误差,所以我们才得到刚才得到的数据。

2、验证推测。

那么同学们有没有什么办法知道三角形的内角和就是180°呢?大家可以讨论一下,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。师生先演示撕下三个角拼在一起是否是平角,同学们在下面操作进行体验,再用课件演示把三个内角折叠在一起(这时要注意平行折,把一个顶点放在边上)学生也动手试一试。

通过我们的验证我们可以得出三角形的内角和是180°。

板书:(三角形内角和等于180°。)

3、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)

4、同学们还有什么疑问吗?大家想一想我们知道了三角形内角和是180°可以干什么呢?(知道三角形中两个角,可以求出第三个角)

出示书28页,试一试第3题,并讲解。

说明:在直角三角形中一个锐角等于30°,求另一个锐角。

生独立做,再订正格式、以及强调不要忘记写度。

小结:同学们有没有不明白的地方?如果没有我们来做练习。

(三)巩固练习,拓展应用

1、出示书29页第一题。说明:第一幅图是锐角三角形已知一个锐角是75°,另一个锐角是28°,求第三个锐角?第二幅图是直角三角形已知一个锐角是35°,求另一个锐角?第三幅图是钝角三角形已知一个锐角是20°,另一个锐角是45°,求钝角?

完成,并填在书上。讲一讲直角三角形还有什么解法。

2、出示29页第2题。

说明:一个钝角三角形说:我的两个锐角之和大于90°。

一个直角三角形说:我的两个锐角之和正好等于90°。让学生判断。

3、画一画:

出示四边形和六边形。运用三角形内角和是180°计算出各自的内角和。你能推算出多边形的内角和吗?

三角形内角和180度是科学家帕斯卡12岁时发现的。我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。

(四)课堂总结

让学生说说在这节课上的收获!

角形内角和教学设计 篇5

【教学内容】

《人教版九年义务教育教科书数学》四年级下册《三角形的内角和》

【教学目标】

1、使学生知道三角形的内角和是180,并能运用三角形的内角和是180解决生活中常见的问题。

2、让学生经历量一量、折一折、拼一拼等动手操作的过程。通过观察、判断、交流和推理探索用多种方法证明三角形的内角和是180。

3、培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。

【教学重点】

使学生知道三角形的内角和是180,并能运用它解决生活中常见的问题。

【教学难点】

通过多种方法验证三角形的内角和是180。

【教学准备】

课件。四组教学用三角板。铅笔。大帆布兜子。固体胶。剪刀。筷子若干。

【教学过程】

一、激趣导入,提炼学习方法

1、课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。激发学生的好奇心。然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”

2、继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。

3、选择工具,总结方法。

让选择不同工具的同学用自己的方法验证。教师随机板书:量一量、拼一拼、折一折。

师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。

4、导入新课。

图中有很多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜欢的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)

二、动手操作,探索交流新知

1、分组活动,探索新知

根据学生的选择把学生分成三组,分别采用量一量、折一折和拼一拼的方法探索新知。

量一量组同学发给以下几种学具:

折一折组同学发给上面的三角形一组。

拼一拼组同学发给上面的三角形一组、剪刀一把还有下面这样的白纸一张。

在学生探索的过程中教师要走近学生,与他们共同交流探讨,在学生有困难的时候要适当给予引导。

2、多方互动,交流新知

师:请我的大徒弟(量一量组)的同学先来汇报你们的研究成果。

(1)首先要求学生说一说你们小组是怎样进行探究的。

(2)说出你们组的探究结果怎样。(在此过程中教师不能急于纠正学生不正确的结论,因为这是知识的形成过程。)

(3)请学生说说通过探究活动你们组得出的结论是什么。

师:大徒弟就是大徒弟,汇报的真不错。二徒弟(折一折组)你们有没有更好的办法呢?

引导这一组从探究的过程和结论与同学、老师交流。

师:别看小徒弟(拼一拼组)这么小,方法可能是最好的。快来把你们的方法给大家汇报汇报。

同样引导这一组从探究的过程和结论与同学、老师交流。

3、思想碰撞,夯实新知

师:三个徒弟你们能说说谁的方法最好吗?

学生都会说自己的方法最好,再让其他同学发表自己的意见,此时生生之间,师生之间交流。(教师要引导学生说出量一量的方法可能由于量的不够准确,所以结果可能比180大一些,或小一些。而其他两种方法没有改变角的大小,所以他们的是正确的。)

师:不论你量的怎样认真都会有不准确的地方,这就叫误差。而其他两组同学的方法更准确。三角形的内角和就是180。(板书:三角形的内角和是180)

四、走进生活,提升运用能力

1、出示课前那架柁标出它的顶角是120,求它的一个底角是多少度?

2、给你三根木条,能做出一个有两个直角的三角形吗?

五、总结

师:徒弟们你们经过三年的苦学,终于学有所成了。今天,能说说你们在我这里都学到了什么手艺吗?

六、拓展新知,课外延伸

师:俗话说“活到老,学到老。”你们下山后还要继续探索,所以我要把我毕生都没有完成的任务交给你们去研究。

大屏幕出示:

能用你今天学过的知识和方法探索一下四边形的内角和是多少度吗?

《三角形内角和》教学设计 篇6

一、教学目标

1、知识目标:通过测量、撕拼(剪拼)、折叠等方法,探索和发现三角形三个内角的度数和等于180°这一规律,并能实际应用。

2、能力目标:培养学生主动探索、动手操作的能力。使学生养成良好的合作习惯。

3、情感目标:让学生体会几何图形内在的结构美。并充分体会到学习数学的快乐。

二、教学过程

(一)创设情境,导入新课

1、师:我们已经认识了三角形,你知道哪些关于三角形的知识?

(学生畅所欲言。)

2、师:我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?让我们一起去看看吧!

师口述:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”,

3、到底谁说的对呢?今天我们就来研究有关三角形内角和的知识。(板书课题:三角形内角和)

(二)自主探究,发现规律

1、认识什么是三角形的内角和。

师:你知道什么是三角形的内角和吗?

通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。

2、探究三角形内角和的特点。

①让学生想一想、说一说怎样才能知道三角形的内角和?

学生会想到量一量每个三角形的内角,再相加的方法来得到三角形的内角和。(如果学生想到别的方法,只要合理的,教师就给予肯定,并鼓励他们对自己想到的方法进行)

②小组合作。

通过小组合作后交流,汇报。(教师同时板书出几个小组汇报的结果)让学生们发现每个三角形的内角和都在180°左右。

引导学生推测出三角形的内角和可能都是180°。

3、验证推测。

让学生动脑筋想一想,怎样才能验证自己的推想是否正确,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。

(小组合作验证,教师参与其中。)

4、全班交流,共同发现规律。

当学生汇报用折拼或剪拼的方法的时候,指名学生上黑板展示结果。

学生交流、师生共同总结出三角形的内角和等于180°。教师同时板书(三角形内角和等于180°。)

5、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)

(三)巩固练习,拓展应用

根据发现的三角形的新知识来解决问题。

1、完成“试一试”

让学生独立完成后,集体交流。

2、游戏:选度数,组三角形。

请选出三个角的度数来组成一个三角形。

150°10°15°18°20°32°

35°50°52°54°56°58°

130°70°72°75°60°

学生回答的同时,教师操作课件,把学生选择的度数拖入方框内,通过电脑计算相加是否等于180°,来验证学生的选择是否正确。验证学生选的对了以后,再让学生判断选择的度数所组成的三角形按角的大小分类,属于哪种三角形。并说出理由。

3、“想想做做”第1题

生独立完成,集体订正,并说说解题方法。

4、“想想做做”第2题

提问:为什么两个三角形拼成一个三角形后,内角和还是180度?

5、“想想做做”第3题

生动手折折看,填空。

提问:三角形的内角和与三角形的大小有关系吗?三角形越大,内角和也越大吗?

6、“想想做做”第5题

生独立完成,说说不同的解题方法。

7、“想想做做”第6题

学生说说自己的想法。

8、思考题

教师拿一个大三角形,提问学生内角和是多少?用剪刀剪成两个三角形,提问学生内角和是多少?为什么?再剪下一个小三角形,提问学生内角和是多少?为什么?最后建成一个四边形,提问学生内角和是多少?你能推导

出四边形的内角和公式吗?

(四)课堂总结

本节课我们学习了哪些内容?(生自由说),同学们说得真好,我们要勇于从事实中寻找规律,再将规律运用到实践当中去。

三教后反思:

“三角形的内角和”是小学数学教材第八册“认识图形”这一单元中的一个内容。通过钻研教材,研究学情和学法,与同组老师交流,我将本课的教学目标确定为:

1、通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180度。

2、已知三角形两个角的度数,会求出第三个角的度数。

本节教学是在学生在学习“认识三角形”的基础上进行的,“三角形内角和等于180度”这一结论学生早知晓,但为什么三角形内角和会一样?这也正是本节课要与学生共同研究的问题。所以我将这节课教学的重难点设定为:通过动手操作验证三角形的内角和是180°。教学方法主要采用了实验法和演示法。学生的折、拼、剪等实践活动,让学生找到了自己的验证方法,使他们体验了成功,也学会了学习。下面结合自己的教学,谈几点体会。

(一)创设情景,激发兴趣

俗话说:“良好的开端是成功的一半”。一堂课的开头虽然只有短短几分钟,但它却往往影响一堂课的成败。因此,教师必须根据教学内容和学生实际,精心设计每一节课的开头导语,用别出心裁的导语来激发学生的学习兴趣,让学生主动地投入学习。本节课先创设画角质疑的情景,当学生画不出来含有两个直角的三角形时,学生想说为什么又不知怎么说,学生探究的兴趣因此而油然而生。

(二)给学生空间,让他们自主探究

“给学生一些权利,让他们自己选择;给学生一个条件,让他们自己去锻炼;给学生一些问题,让他们自己去探索;给学生一片空间,让他们自己飞翔。”我记不清这是谁说过的话,但它给我留下深刻的印象。它正是新课改中学生主体性的表现,是以人为本新理念的体现。所以在本节课中我注重创设有助于学生自主探究的机会,通过“想办法验证三角形内角和是180度”这一核心问题,引发学生去思考、去探究。我让他们将课前准备好的三角形拿出来进行研究,学生通过折一折、拼一拼、剪一剪等活动找到自己的验证方法。学生拿着他们手中的三角形,在讲台上讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。这样,学生在经历“再创造”的过程中,完成了对新知识的构建和创造。

(三)以学定教,注重教学的有效性

新课表指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。要把学生的个人知识、直接经验和现实世界作为数学教学的重要资源,即以学定教,注重每个教学环节的有效性。本课中当我提出“为什么一个三角形中不能有两个角是直角”时,有学生指出如果有两个直角,它就拼不成了一个三角形;也有学生说如果有两个直角,它就趋向于长方形或正方形。“为什么会这样呢”?学生沉默片刻后,忽然有个学生举手了:“因为三角形的内角和是180度,两个直角已经有180度了,所以不可能有两个角是直角。”这样的回答把本来设计的教学环节打乱了,此时我灵机把问题抛给学生,“你们理解他说的话吗、你怎么知道内角和是180度、谁都知道三角形的内角和是180度”等,当我看到大多数的已经知道这一知识时,我就把学生直接引向主题“想不想自己研究证明一下三角形的内角和是不是180度。”激发了学生探究的兴趣,使学生马上投入到探究之中。

在练习的时候,由于形式多样,所以学生的兴趣非常高涨,效果很好。通过多边形内角和的思考以及验证,发展了学生的空间想象力,使课堂的知识得以延伸。

《三角形内角和》教学设计 篇7

教学要求

1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

2、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

3、培养学生动手动脑及分析推理能力。

教学重点

三角形的内角和是180°的规律。

教学难点

使学生理解三角形的内角和是180°这一规律。

教学用具

每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。

教学过程:

一、出示预习提纲

1、三角形按角的不同可以分成哪几类?

2、一个平角是多少度?1个平角等于几个直角?

3、如图,已知∠1=35°,∠2=75°,求∠3的度数。

二、展示汇报交流

1、投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)

2、三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。

3、以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?

4、指名学生汇报各组度量和计算的结果。你有什么发现?

5、大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。

6、刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?

提示学生,可以把三个内角拼成一个角,就只需测量一次了。

7、请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。

8、三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)

9、拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)

10、那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)11。老师板书结论:三角形的内角和是180°。

12、一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?

13、出示教材85页做一做。让学生试做。

14、指名汇报怎样列式计算的。两种方法均可。

∠2=180°—140°—25°=15°

∠2=180°(140°+25°)=15°

课后反思:

对于三角形的内角和,学生并不陌生,在平时的做题中已经涉及到了。可是学生并不知道如何去验证,所以本节课,重点让孩子们经历体验,感悟图形。从而收获了经验。特别是动手操作将三角形拼成一个直角时,有的孩子将角剪得非常小,很不好拼,在此进行了重点的提示。

《三角形内角和》教学设计 篇8

教学目标:

1、通过测量一量、拼一拼、折一折三个活动,探索和发现三角形三个内角的度数和等于180°。

2、已知三角形两个角的度数,会求出第三个角的度数。

3、经历三角形内角和的研究方法,感受数学研究方法。

教学重点:

1、探索和发现三角形三个内角的度数和等于180°。

2、已知三角形两个角的度数,会求出第三个角的度数。

教学难点:掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。

教学用具:表格、课件。

学具准备:各种三角形、剪刀、量角器。

一、创设情境揭示课题。

1、一天两个三角形发生了争执,他们请你们来评评理。大三角形说:“我的个头大,所以我的内角和一定比你大。”小三角形很不甘心地说:“我有一个钝角,我的内角和一定比你大。”。谁说得有道理呢?今天让我们来做一回裁判吧。

生1:大三角形大(个子大)

生2:小三角形大(有钝角)

(教师不做判断,让学生带着问题进入新课)

2、什么是三角形的内角和?(板书:内角和)

讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

二、自主探究,合作交流。

(一)提出问题:

1、你认为谁说得对?你是怎么想的?

2、你有什么办法可以比较一下这两个三角形的内角和呢?

生1:用量角器量一量三个内角各是多少度,把它们加起来,再比较。

生2:用拼一拼的办法把三个角拼到一起看它们能不能组成平角。

生3:用折一折的办法把三个角折到一起看它们能不能组成平角

(二)探索与发现

活动一:量一量

(1)①了解活动要求:(屏幕显示)

A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确)

B、把测量结果记录在表格中,并计算三角形内角和。

C、讨论:从刚才的测量和计算结果中,你发现了什么?

(引导生回顾活动要求)

②小组合作。

③汇报交流。

你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?

(引导学生发现每个三角形的三个内角和都在180°,左右。)

(2)提出猜想

刚才我们通过测量和计算发现了三角形内角和都在180度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?(板书:猜测)

活动二:拼一拼,验证猜想

这个猜想是否成立呢?我们要想办法来验证一下。(板书验证)

引导:180°,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?

(1)小组合作,讨论验证方法。(把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是180°)。

(2)讨论:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?

(3)分组汇报,讨论质疑

(4)课件演示,验证结果

活动三:折一折

师生一起活动,教师先让学生看课件演示,然后拿出准备好的三角形纸艮老师一起折一折。

(把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,也证明了三角形内角和等于180°,)。

讨论:锐角三角形、直角三角形、钝角三角形能否得到相同的结论?

提问:还有没有其它的方法?

3、回顾两种方法,归纳总结,得出结论。

(1)引导学生得出结论。

孩子们,三角形内角和到底等于多少度呢?”

学生答:“180°!”

(2)总结方法,齐读结论

我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)

(3)解释测量误差

为什么我们刚才通过测量,计算出来的三角形内角和不是180°,呢?

那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一定的误差。实际上,三角形内角和就等于180°

(三)回顾问题:

现在你知道这两个三角形谁说得对了吗?(都不对!)

为什么?请大家一起,自信肯定的告诉我。

生:因为三角形内角和等于1800180°。(齐读)

三、巩固深化,加深理解。

1、试一试:数学书28页第3题

∠A=180°-90°-30°

2、练一练:数学书29页第一题(生独立解决)

∠A=180°-75°-28°

3、小法官:数学书29页第二题

四、回顾课堂,渗透数学方法。

1、总结:猜想—验证—归纳—应用的数学方法。

2、介绍:三角形内角和等于180度这个结论的由来;数学领域里还未被证明的其它猜想,如哥德巴赫猜想、霍启猜想、庞加莱猜想等。

3、课堂延伸活动:探索——多边形内角和

板书设计:

探索与发现(一)

三角形内角和等于180°

《三角形内角和》数学教案 篇9

【教学目标】

1、学生动手操作,通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。

2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

【教学重点】

探究发现和验证"三角形的内角和为180度"的规律。

【教学难点】

理解并掌握三角形的内角和是180度。

【教具准备】

PPT课件、三角尺、各类三角形、长方形、正方形。

【学生准备】

各类三角形、长方形、正方形、量角器、剪刀等。

【教学过程】

口算训练(出示口算题)

训练学生口算的速度与正确率。

一、谜语导入

(出示谜语)

请画出你猜到的图形。谁来公布谜底?

同桌互相看一看,你们画出的三角形一样吗?

谁来说说,你画出的是什么三角形?(学生汇报)

(1)锐角三角形,(锐角三角形中有几个锐角?)

(2)直角三角形,(直角三角形中可以有两个直角吗?)

(3)钝角三角形,(钝角三角形中可以有两个钝角吗?)

看来,在一个三角形中,只能有一个直角或一个钝角,为什么不能有两个直角或两个钝角呢?三角形的三个角究竟存在什么奥秘呢?这节课,我们一起来学习"三角形的内角和。"(板书课题:三角形的内角和)

看到这个课题,你有什么疑问吗?

(1)什么是内角?有没有同学知道?

内:里面,三角形里面的角。

三角形有几个内角呢?请指出你画的三角形的内角,并分别标上∠1、∠2、∠3。

(2)谁还有疑问?什么是内角和?谁来解释?(三个内角度数的和)。

(3)大胆猜测一下,三角形的内角和是多少度呢?

【设计意图】

创设数学化的情境。学生用已经学的三角形的特征只能解释"不能是这样",而不能解释"为什么不能是这样"。这样引入问题恰好可以利用学生的这种认知冲突,激发学生的学习兴趣。

二、探究新知

有猜想就要有验证,我们一起来探究用什么方法能知道三角形的内角和呢?

1、确定研究范围

先请大家想一想,研究三角形的内角和,是不是应该包括所用的三角形?

只研究你画出的那一个三角形,行吗?

那就随便画,挨个研究吧?(太麻烦了)

怎么办?请你想个办法吧。

分类研究:锐角三角形,直角三角形,钝角三角形(贴图)

2、探究三角形的内角和

思考一下:你准备用什么方法探究三角形的内角和呢?

小组合作:从你的学具袋中,任选一个三角形,来探究三角形的内角和是多少度?

小组汇报:

(1)量一量:把三角形三个内角的度数相加。

直接测量的方法挺好,虽然测量有误差,但我们知道了三角形的内角和在180°左右。究竟是不是一定就是180°呢?哪个小组还有不同的方法?

(2)拼一拼:把三角形的三个内角剪下来,拼成了一个平角。

能想到这种剪一剪拼一拼的方法,真不简单。三个角拼在一起,看起来像个平角,究竟是不是平角呢?谁还有别的方法?

(3)折一折:把三角形的三个角折下来,拼成了一个平角。

这种方法真了不起,能借助平角的度数来推想三角形内角和是180°。

总结:同学们动脑思考,动手操作,运用不同的方法来验证三角形的内角和。这三种方法都很好,但在操作过程中,难免会有误差,不太有说服力。我们能不能借助学过的图形,更科学更准确的来验证三角形的内角和?

3、演绎推理的方法。

正方形四个角都是直角,正方形内角和是多少度?

你能借助正方形创造出三角形吗?(对角折)

把正方形分成了两个完全一样的直角三角形,每个直角三角形的内角和:360°÷2=180°

再来看看长方形:沿对角线折一折,分成了两个完全一样的直角三角形,内角和:360°÷2=180°

这种方法避免了在剪拼过程中操作出现的误差,

举例验证,你发现了什么?

通过验证,知道了直角三角形的内角和是180度。

你能把锐角三角形变成直角三角形吗?

把锐角三角形沿高对折,分成了两个直角三角形。

一个直角三角形的内角和是180°,那么这个锐角三角形的内角和就是180°×2=360°了,对吗?(360-180=180°)

通过计算,我们知道了这个锐角三角形的内角和是180°,那么所有的锐角三角形的内角和都是180°吗?你是怎么知道的?

通过刚才的计算,你发现了什么?(锐角三角形内角和180°)

钝角三角形的内角和,你们会验证吗?谁来说说你的想法?180×2-90-90=180°

通过验证,你又发现了什么?(钝角三角形内角和180°)

4、总结

通过分类验证,我们发现:直角180,锐角180,钝角180,也就是说:三角形的内角和是180°。也验证了我们的猜想是正确的。(板书)

5、想一想,下面三角形的内角和是多少度?(小--大)

你有什么新发现?(三角形的内角和与它的大小,形状没有关系。)

【设计意图】

为了满足学生的探究欲望,发挥学生的主观能动性,通过独立探究和组内交流,实现对多种方法的体验和感悟。学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。

三、自主练习

1、在一个三角形中,如果想求一个角的度数,至少得知道几个角的度数呢?(2个)那我们就试一试,挑战第一关。(两道题)

2、算得真快!如果只知道一个角的度数,还能求出未知角的度数吗?挑战第二关。(三道题)

3、说得真清楚,如果一个角的度数也不知道,你还能求出未知角的度数吗?挑战第三关。(一道题)

师:同学们真了不起,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,都能正确求出未知角的度数。

4、学无止境,课下,请你利用三角形的内角和,探究一下四边形、五边形、六边形的内角和各是多少度?

【设计意图】

练习由浅入深,层层递进。从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,梯度训练,拓展思维。

四、课堂总结

同学们,回想一下,这节课我们学习了什么?通过这节课的学习,你有哪些收获呢?

真了不起,同学们不仅学到了知识,还掌握了学习的方法。"在数学的天地里,重要的不是我们知道什么,而是我们怎么知道的",在这节课上,重要的不是我们知道了三角形的内角和是180°,而是我们通过猜测,一步一步验证,得到这个规律的过程。

课后反思

《三角形的内角和》是五四制青岛版四年级上册第四单元的信息窗二,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一系列活动得出"三角形的内角和等于180°"。

本着"学贵在思,思源于疑"的思想,这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。"问题的提出往往比解答问题更重要",其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是"知其然而不知其所以然"。

为此,我设计了大量的操作活动:画一画、量一量、折一折、拼一拼等,我没有限定了具体的操作环节。在操作活动中,老师有"扶"有"放"。做到了"扶"而不死,"伴"而有度,"放"而不乱。利用课件演示,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。

最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,层级练习,步步加深,梯度训练。

教学是遗憾的艺术。当然本节课的教学中,存在许多不尽如意之处:

1、让学生养成良好的学具运用习惯,特别是小组学生在合作操作时,应有效指导,对学生及时评价,激励表扬,调动学生学习的积极性与主动性。

2、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。

3、在做练习时,为了赶时间,题出现的频率较快,留给学生计算思考的时间不足,可能只照顾到好学生的进程,没有关注全体学生,今后应注意这一点。

教学是一门艺术,上一节课容易,上好一节课谈何容易,在今后的课堂教学中,只有勤学、多练,才能更好的为学生的学习和成长服务,让自己的人生舞台绽放光彩。

《三角形内角和》教学设计 篇10

教材内容:

北师大版义务教育课程标准实验教材四年级下册。

教学目标:

1、经历观察、猜想、实验、验证等数学活动,探索并发现三角形的内角和180°。在实验活动中,体验探索的过程和方法。

2、掌握三角形内角和是180°这一性质,并能应用这一性质解决一些简单的问题。

3、经历探究过程,发展推理能力,感受数学的逻辑美。

教学难点、重点:经历观察、猜想、实验、验证等数学活动,探索并发现三角形的内角和规律。

教具准备:直角三角形、锐角三角形、钝角三角形各3个,大三角形、小三角形各1个。

学具准备:直角三角形、锐角三角形、钝角三角形各3个。

教学设计意图:

“三角形的内角和180°”是三角形的一个重要性质,教材通过多种方法的操作实验,让学生确信这一个性质的正确性。根据学生已有的知识经验和教材的内容特点,本着“学生的数学学习过程是一个自主构建自己对数学知识的理解过程”的教学理念,采用探究式教学方式,让学生经历观察、猜想、实验、反思等数学活动,体验知识的形成过程。整个教学设计力求改变学生的学习方式,突出学生的主体性。在教师的组织引导下,让学生在开放的学习过程中,自始至终处于积极状态,主动参与学习过程,自主地进行探索与发现,多角度和多样化地解决问题,从而实现知识的自我建构,掌握科学研究的方法,形成实事求事的科学探究精神。

教学过程:

活动一:设疑激趣

师:我们已经认识了三角形,关于三角形你知道了什么?

生1:三角形有3条边、3个角。

生2:三角形按角分可以分为锐角三角形、直角三角形、钝角三角形;三角形按边分可以分为等腰三角形和不等边三角形。

生3:每种三角形都至少有两个锐角。

师:三角形有3个角,这3个角又叫三角形的内角。三角形按内角的不同分为锐角三角形、直角三角形、钝角三角形。

师:能不能画一个含有两个直角或两个钝角的三角形呢?为什么?

生1:我试着画过,画不出来。

生2:因为每个三角形至少有两个锐角,所以不可能画出含有两个直角或两个钝角的三角形。

生3:三角形的内角和是180°,两个直角的和已经是180°,所以不可能。

师:你能解释一下什么是“三角形的内角和”吗?你是怎样知道“三角形的内角和是180°”的?

生:把三角形的三个内角的度数相加就是三角形的内角和。“三角形的内角和是180°”我是从书上看到的。

师:你验证过了吗?

生:没有。

师:三角形的内角和是不是180°?咱们还没有认真地研究过,接下来,我们就一起来研究三角形的内角和。

设计意图:“我们已经认识了三角形,关于三角形你知道什么?”课一开始,教师就设计了一个空间容量比较大的问题,旨在让学生自主复习三角形的有关知识,引出三角形的内角概念。然后创设一个能激发学生探究欲望的问题:“能不能画出一个含有两个直角或两个钝角的三角形呢?”有的学生通过动手画,发现一个三角形中不可能有两个直角或两个钝角;有的学生认为三角形的内角和是180°,两个直角的和已是180°,所以不可能。这种认识可能来自于书本,也可能来自于家长的辅导,但学生对于“三角形的内角和是180°”的体验是没有的,学生对所学的知识仅仅还是一种机械的识记,因此“三角形的内角和是否为180°”就成了学生急切需要探究的问题。

活动二:自主探究

师:请同学们拿出课前准备的材料,自己想办法验证三角形的内角和是不是180。?

学生动手操作验证。

师:请大家静静地思考1分钟,将刚才的实验过程在脑中梳理一下。现在请把自己的研究过程、结果跟大家交流一下。

生1:我是用量角器测量的,我量的是直角三角形:

90。+ 42。+47。=179。

生2:我量的也是直角三角形:

90。+43。+48。=181。

生3:我量的是锐角三角形:

32。+65。+83。=180。

生4:我量的是钝角三角形:

120。+32。+30。=182。

生5:……

师:看到这些度量结果,你有什么想法?

生1:为什么他们测量的结果会不相同?

生2:也许我们测量的方法不精确。

生3:也许我们的量角器不标准。

生4:也可能三角形的内角和不一定都是180°。

师:是呀,用量角器度量容易出现误差,但这些度量的结果还是比较接近的,都在180°左右。

师:有没有没使用量角器来验证的呢?

生:我是用三个相同的三角形来接的(如图)。∠1、∠2、∠3刚好拼成一个平角,所以三角形的内角和是180°。

师:你怎么知道这三个角拼成的大角刚好是一个平角呢?有办法验证吗?

生1:用量角器测量不就知道了吗?

生2:用三角板的两个直角去拼来验证。

生3:因为平角的两条边成一条直线,所以可用直尺来检验。

生4:再拿三个相同的三角形按上面的方法进行拼,这样6个相同的三角形,中间就可以拼出一个周角(如图),周角的一半刚好是平角。

师:通过刚才的验证,可以说明∠1、∠2、∠3拼成的角是平角,那么锐角三角形的三个内角能拼成一个平角吗?钝角三角形呢?请大家试一试。师:如果现在只有一个三角形怎么办?

生:我是将锐角三角形的三个角分别撕下来,拼成一个平角,平角是180°所以锐角三角形的内角和是180°。

师:直角三角形、钝角三角形行吗?来试一试。

生1:老师,不剪下三角形的三个内角也可以验证。只要将三角形的三个内角折拼在一起,看看是不是拼成一个平角就可以了。

师:大家就用折拼的方法试一试。

学生操作验证。

师:刚才我们除了用量角器度量的方法,同学们还想出了其他一些方法:用三个相同的三角形拼、剪拼、折拼等方法,这些方法形式上看起来不一样,其实有共同点吗?

生:都是将三角形的三个内角拼在一起,组成一个平角来验证三角形的内角和是不是180°。

师:通过上面的实验,你 可以得出什么结论?

生:三角形的内角和是180。

师:是任意三角形吗?刚才我们才验证了几个三角形呀?怎么就可以说是任意三角形呢?

生:三角形按角分只有锐角三角形、直角三角形、钝角三角形三种,刚才我们都验证过了。

师:(出示一个大三角形)它的内角和是多少度?如果将这个三角形缩小(出示一个小三角形),它的内角和又是多少度?为什么?

生:三角形的三条边缩短了,可它的三个角的大小没变,所以它的内角和还是180。

师生小结:三角形不论形状、大小,它的内角和总是180。

设计意图:学生明确探究主题后,教师只为学生提供探究所需的材料,而不直接给出实验的方法和程序,激励学生自己想办法实验验证,获得结论。然后引导学生交流、评价、反思与提升。验证过程中较好地体现了解决同一问题思维方法,验证策略的多样性。促进了学生发散思维能力的提高,提升了思维品质。

活动三:应用拓展

1、计算下面各个三角形中的∠B的度数。

师:(图2)怎样求∠B?

生:180。-90。-55。=35。

师:还有不同的解法吗?

生:180。÷2-55。=35。,因为三角形的内角和是180。,其中一个直角是90。,另外两个锐角的和刚好是90。

师:是不是任意一个直角三角形的两锐角和都是90。呢?能验证一下吗?

生:因为任意三角形的内角和是180。,其中一个直角是90。,所以其他两个锐角的和肯定是90。

师:有没有反对意见或表示怀疑的?从中我们可以发现一条什么规律?

生:直角三角形的两个锐角和是90。

2、一个等腰三角形顶角是90。,两个底角分别是多少度?

3、等边三角形的每个内角是多少度?

师:现在你能解决为什么一个三角形里不能有两个直角或两个钝角吗?

生:略。

师:通过这节课的学习,你还有什么疑问或还想研究什么问题?

生:三角形有内角和,三角形有外角和吗?

师:你知道三角形的外角在哪儿吗?三角形有外角和,它的外角和是多少度呢?有兴趣的同学请课后研究。

课末,教师激励学生提出新的问题:通过这节课的学习,你还有什么疑问或者还想研究什么问题?培养学生的问题意识,同时让学生带着问题走出教室,拓展学生数学学习的时间和空间。