《正方形面积的计算【5篇】》
教学难点 篇1
正确理解正方形面积的计算方法.
教学目标 篇2
1.使学生理解并掌握正方形面积的计算方法.
2.通过正方形面积公式的推导,初步渗透事物之间具有内在联系,并可以互相转化的观点,培养学生思维的深刻性.
3.培养学生分析、推理、抽象、概括能力和动手操作的能力.
教学过程 篇3
一、复习准备.
师:我们掌握了面积、面积单位和长方形面积的计算,请同学们回忆以下几个问题.
1.什么叫面积?
(物体的表面或围成的平面图形的大小,叫做它们的面积)
2.测量或计算面积时,常用的面积单位有哪些?
(平方厘米、平方分米、平方米)
3.闭上眼睛想一想,1平方厘米、1平方分米、1平方米各有多大?然后用手比划一下1平方厘米、1平方分米、1平方米的大小.
4.想一想长方形、正方形各有什么特征?
(长方形有四条边,对边相等,4个角都是直角.正方形四条边都相等,4个角都是直角)
5.要计算长方形的面积,必须知道哪两个已知条件?
(长和宽各是多少)
二、学习新课.
1.看图列式计算长方形面积.
投影出示长6厘米、宽2厘米的长方形.(单位:厘米)
(逐步移动长方形的宽,直至使长方形转化为正方形)
长6厘米、宽2厘米 6×2=12(平方厘米)
长6厘米、宽3厘米 6×3=18(平方厘米)
长6厘米、宽4厘米 6×4=24(平方厘米)
长6厘米、宽5厘米 6×5=30(平方厘米)
长6厘米、宽6厘米 6×6=36(平方厘米)
师:长6厘米、宽6厘米,这是一个什么图形?(正方形)
2.怎样计算正方形的面积?
学生通过研究,讨论得出正方形面积的计算公式.(老师板书)
正方形的面积=边长×边长
师:我们利用这个公式,解决一个实际问题.(出示例题)
例:有一块边长是5分米的正方形玻璃,它的面积是多少?
(学生独立完成,订正时老师板书)
5×5=25(平方分米)
答:它的面积是25平方分米.
三、巩固反馈.
1.量一个正方形手帕的边长,并计算它的面积.
(请一个同学量一下,告诉大家,正方形手帕边长3分米)
3×3=9(平方分米)
答:它的面积是9平方分米.
2.计算下面图形的面积.
投影出示.
(1)单位:厘米
2×2=4(平方厘米)
(2)单位:分米
9×9=81(平方分米)
答:正方形面积是4平方厘米. 答:正方形面积是81平方分米.
3.有一张方桌,桌面的边长是8分米.要配上一块与桌面同样大的玻璃,这块玻璃的面积应该是多少?
8×8=64(平方分米)
答:这块玻璃的面积是64平方分米.
4.一块长方形菜地的面积是120平方米.它的长是24米,它的宽是多少米?
想:根据长方形面积的计算公式考虑.
120÷24=5(米)
答:它的'宽是5米.
5.怎样验算?
下面请同学们看一道思考题.(投影出示)
用一根长40厘米的细铁丝,围成几个不同的长方形,再围成一个正方形,算一算围成的图形中哪一种面积最大?
分析:首先计算出长方形的长与宽的和.
40÷2=20(厘米)
(按长、宽都是整厘米计算)
长方形的长 长方形的宽 面积
19厘米 1厘米 19平方厘米
18厘 2厘米 36平方厘米
17厘米 3厘米 51平方厘米
16厘米 4厘米 64平方厘米
15厘米 5厘米 75平方厘米
14厘米 6厘米 84平方厘米
13厘米 7厘米 91平方厘米
12厘米 8厘米 96平方厘米
11厘米 9厘米 99平方厘米
10厘米 10厘米 100平方厘米
师:从上面情况,清楚看出当长和宽相等时,也就是围成正方形时,它的面积最大.
10×10=100(平方厘米)
答:围成的正方形的面积最大,有100平方厘米.
四、小结.
今天我们学习了正方形面积的计算.同学们掌握得很好,还有什么问题吗?
五、作业.
1.有一张方桌,桌面的边长是8分米.要配上一块与桌面同样大的玻璃,这块玻璃的面积应该是多少?
2.拿一张边长是10厘米的正方形纸板,剪下一个长10厘米、宽6厘米的长方形.剩下的部分是什么形?它的面积是多少平方厘米?
教案点评:
本节课学习正方形面积的计算.首先对于所要涉及到的基础知识进行复习,铺垫.复习面积的意义,面积单位,长方形,正方形的特征以及长方形面积的计算公式.在复习长方形面积计算的基础上,引出新课的学习,这样考虑学生接受起来比较自然,易于掌握.
拼正方形 篇4
活动目的
1.使学生在变换图形的过程中进一步熟悉面积的计算方法.
2.培养学生的动手能力与计算能力.
活动准备
若干根12厘米长的细铁丝.
活动过程
1.教师出示题目:用一根长12厘米的细铁丝做一个正方形框架(如图),它围成的图形的面积为9平方厘米.请在不剪断铁丝的情况下,设法把所围的面积逐次变成8平方厘米、7平方厘米、6平方厘米、5平方厘米、4平方厘米、3平方厘米、2平方厘米、1平方厘米.你能办到吗?
2.学生分组,先讨论,然后动手操作.
教学重点 篇5
理解并掌握正方形面积的计算公式,能正确地计算正方形的面积.