《五年级数学教案【优秀3篇】》
教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。这里给大家分享一些关于五年级的数学教案,方便大家学习。下面是整理的五年级数学教案【优秀3篇】,您的肯定与分享是对小编最大的鼓励。
五年级数学教案 篇1
教学目标:
1、让学生经历观察、比划、测量等学习活动,明确毫米产生的实际意义,使他们初步认识新的长度单位毫米,建立1毫米的概念,会用毫米作单位进行测量,并能掌握毫米与厘米间的关系,进行简单的换算。
2、借助具体的测量活动,进一步培养学生的动手操作能力,能估计一些物体的长度,进一步发展估测意识。
3、感受数学与生活的密切联系,学会与他人合作,从而获得积极的学习数学的情感。
教学重点:
建立较为准确的“1毫米”的概念。
教学难点:
理解厘米与毫米之间的进率。
教学准备:
教师准备课件、米尺;学生准备书、直尺一把、一枚1分硬币、一张银行借记卡、小棒等。
教学过程:
一、创设情境,揭示课题。
1、复习米和厘米,引导学生用手势来表示1米和1厘米各有多长。
2、估计数学书的宽和厚大约是多少,动手测量验证。
3、组织交流测量结果,引出毫米产生的意义。
4、揭示课题“毫米的认识”。
二、自主探究,学习新知。
1、建立“1毫米”的表象。
①毫米可以用字母mm来表示。设疑:关于毫米,你已经知道了哪些知识?(学生思考、交流)
②在学生交流的基础上,重点探讨“1毫米”有多长,请学生在尺上相互指指,从哪里到哪里是1毫米。再请持有不同意见的同学向全班汇报、交流。
揭示:为了看得更清楚些,我们把尺子用放大镜放大,把1厘米平均分成10份,其中的任何一份也就是每一小格的长度,就是1毫米(边介绍边用课件演示)然后,请学生在自己的尺子上再指一指1毫米有多长。
③思考:现在你觉得毫米与厘米之间有什么关系?
1厘米=10毫米
④请学生想一想哪些物体的长度大约是1毫米。(教师准备1分硬币、电话卡和银行借记卡,请学生量一量厚度,加深对“1毫米”的体验。)
⑤引导学生用手势来表示1毫米有多长,并谈谈自己的感受。
⑥说一说,生活中还有哪些地方用到“毫米”作单位。(学生举例,教师提供一些资料)
⑦学生填写数学书的厚和宽并反馈。
2、画线段。(3厘米7毫米长的线段。)
提问:用直尺画线段时需要注意什么?如何画出3厘米7毫米长的线段?
学生可能有以下几种画法
A、利用刻度尺先画出3厘米的线段,再接着画出7毫米。
B、在刻度尺上输出37毫米(3厘米=30毫米),然后画线段。
学生操作,教师巡视引导,注意线段从“0”刻度开始画和不从“0”刻度开始画的画法区别。
三、实践应用,巩固新知
1、学生根据本课的新内容完成“做一做”第1、2、题。
第1题让学生根据图示读出刻度尺所测量的物体长度。明确先1厘米1厘米地鼠,不满1厘米的再1毫米1毫米地数,这样的方法更加的快捷方便。学生读数,再指名汇报。
第2题让学生先估算,再测量,然后集体订正,指名说说理由。
2、完成“练习五”第2题。
以毫米为单位测量出每条边的长度,学生独立完成后集体订正。
四、课堂小结,课外延伸。
这节课我们学习了什么?你学会了什么?请你用手势表示1毫米大约有多长。米不是的长度单位,毫米也不是最小的长度单位,如果你们有兴趣,希望你们到书中或网上查查看。
板书设计:
毫米的认识
1厘米=10毫米
10毫米=1厘米
五年级数学教案 篇2
教学目标:
1、知识与技能:使学生理解并掌握质数、合数的概念,并能进行正确的判断。
2、过程与方法:采用探究式学习法,通过操作、观察自主学习、提出猜想、合作、交流验证、分类、比较、抽象、归纳总结、巩固提高学习过程,培养学生动手操作、观察和概括能力,培养学生积极探究的意识。
3、情感态度与价值观:在体验与探究的活动中,让学生体验数学活动充满着探索与创新,感受数学文化的魅力,培养学生勇于探索的科学精神。
教学重点:
理解质数和合数的意义
教学难点:
判断一个数是质数还是合数的方法,明确自然数按因数的个数可分为三类
教具学具准备:
学生每人准备一张学号牌、课件
教学过程:
(一)创设情境,激趣导入
1、介绍学号数字9和12,引出整数的第一次分类:偶数、奇数。
2、学生介绍数字时出现质数,教师借机引入本节课学习内容:质数和合数。
3、学生汇报预习结果,同时提出学习目标。
(二)主动参与,探索新知
1、课前预习。每个同学都有自己的学号,课前大家已经在自己的学号牌上写出1—20的所有因数。(课前完成)
2、交流:课件出示1—12所有的因数,现在请所有同学一起来观察屏幕,看看你把1—12依据什么标准进行分类的?你又是如何理解质数与合数的?课前大家在预习的时候已经有了自己的想法,现在在组内互相说一说。(交流、汇报)
【设计意图:根据给定的标准观察、分析,突出了有关概念的本质特征,又能使学生体会到分类标准的合理性。通过对“1”的研究,完善对非0自然数的认识,促进学生对质数和合数概念的理解。】
3、教师提问:我们班有29个人,谁的学号是质数?谁的学号是合数?1号同学呢?引出整数的第二次分类(板书)
4、判断下面各数,哪些是质数,哪些是合数。
17 22 29 35 37 87
学生先自己想一想,然后分组讨论,汇报交流。
【设计意图:课堂上充分发挥学生的主体作用,营造独立思考的时间和空间,使他们积极参与课堂讨论,促进学生的自主学习和探究。】
(三)动手实践,制作100以内的质数表。
1、51是质数还是合数?要想马上知道一个数是什么数还真不容易。(过渡)如果有质数表可查就方便了。我们一起制作一个质数表,拿出100以内的数表,想想怎样找出100以内的质数,制成质数表。
2、刚才,我们有些同学接受任务后,有的马上就去找,有人在思考。要是我,我可不及于去找,而是想一想用什么方法去找。说说你们是怎样找的?
(把质数留下,其他的数去掉,古代数学家就是用这种筛选的方法制作质数表的。我们都来筛吧!)
3、怎样筛选的更快?……同学们自己发现了规律制成了100以内的质数表。你们真了不起!
【设计意图:通过教师的引导,学生自主建构知识,完成100以内的质数表,使学生形成一个知识网络,进一步发展了学生的数感。】
(四)巩固练习,拓展延伸
1、你能写成几个质数相乘的形式吗?
2、判断下面这段话中的数字是质数还是合数。
2月8日,13名河北唐山农民自费来到遭受最严重冰雪灾害的湖南郴州抗冰救灾,他们每天凌晨5点准时起床,忙到晚上12时才能休息,每天工作近20小时,16天时间他们帮助灾区重建了10座电塔。
3、猜一猜:小红家的电话号码是多少?
最小的合数,它的因数只有1和3,既不是合数也不是质数,10以内最大的偶数它的最大的因数是8,10以内3的倍数同时又是偶数,10以内最大的合数
【设计意图:通过设计一组有层次的练习,既巩固了新知,又联系了以前的知识。通过交流,充分展示学生的思维,强化探究学习的效果,取长补短,达到共同进步。】
4、课堂反馈:
(五)归纳总结,师生评价
1、总结:本节课学习了什么?你有什么收获?还有什么疑问?
2、回到课始情境,你能打开密码锁了吗?里面是什么?屏显示:“快乐学习,快乐成长”八个大字。
3、师:这就是老师送给你们的礼物。你们快乐吗?说说感受。
【设计意图:通过总结与反思,及时反馈,学生内化知识。通过评价,使学生体验成功,树立学好数学的信心。】
五年级数学教案 篇3
教学目标
(一)进一步理解求平均数的意义,掌握较复杂的求平均数的方法。
(二)通过题目设计,对学生进行思想品德教育。
(三)培养学生灵活计算的能力和解决实际问题的能力。
教学重点和难点
求平均数的意义及较复杂的求平均数的方法。
较复杂的求平均数的方法。
教学用具
教具:电脑软件、投影片。
学具:判断卡。
教学过程设计
(一)复习准备
1.口算。
①小明有12本书,小军有20本书,小明和小军平均每人有几本书?
②五(3)班做好事28件,五(4)班做好事36件,平均每个班做好事多少件?③五年级一班分成3组投篮球,第一组投中28个,第二组投中33个,第三组投中23个,平均每组投中多少个?
由学生自己解答(列式计算)针对第③题提问:
①说出这道题的问题是什么?
②求平均数必须知道什么条件?
③说一说你是怎样计算的?
板书:投中总个数÷组数。
(二)学习新课
1.出示例 1:
五年级一班分成3组投篮球,第一组10人,共投中28个;第二组11人,共投中33个;第三组9人,共投中23个。全班平均每人投中多少个?
读题后,学生分组讨论思考题。(投影片)
①例1和准备题③比较,题目有什么异同?(从条件和问题两方面考虑。)②要求全班平均每人投中多少个,必须先知道什么条件?
在学生回答基础上,板书:投中总个数÷全班总人数。
教师:投中总个数和全班总人数题目中给了吗?怎么办?
②投中总个数和全班总人数知道之后,怎样求全班平均每人投中多少个?
尝试自己列式,然后讨论订正。
板书:
(1)全班一共投中多少个?
28+33+23=84(个)
(2)全班一共有多少人?
10+11+9=30(人)
(3)全班平均每人投中多少个?
84÷30=2。8(个)
教师:综合算式怎样列?(学生试列式,再讨论订正。)
板书:(28+33+23)÷(10+11+9)=2。8(个)
答:全班平均每人投中2。8个。
教师:对比例1和准备题③你能发现解答方法有什么异同吗?为什么会出现这种不同的情况?
2.出示例2:(投影片)
下表是五年级二班3个组投中篮球情况统计表。全班平均每人投中多少个?(得数保留一位小数)
教师:例2和例1比较,有什么异同?
明确:例1和例2的问题一样,但已知条件不同。
教师:要求全班平均每人投中多少个,要知道什么条件?(学生试做,然后说出自己的列式和思路,充分讨论,如果有不同意见互相交换,最后弄清怎样是对的。)
板书:
(1)全班一共投中多少个?
2.5×12+3×11+3。2×10=95(个)
由学生完成。
(2)全班一共有多少人?
________________________
(3)全班平均每人投中多少个?
________________________
答:全班平均每人投中________个。
教师:你能列出综合算式吗?
板书:(2。5×12+3×11+3。2×10)÷(12+11+10)。
讨论:对比例2和例1有什么不同?解答时应该注意什么问题?
教师:求平均数时,有时不能除尽,这时需要根据具体情况取近似值。
(三)巩固反馈
1.做一做:
小亮读一本书,前4天平均每天看6。25页,后3天平均每天看8页。小亮这一星期平均每天看多少页?(先说思路,再列式计算。)
2.判断正误并说明理由。
①小李加工一批零件,前2时加工28个,后3时加工36个,平均每时加工多少个?
[ ]
A.(28+36)÷(3+2);
B.(28 × 2+36 × 3)÷(3+2);
C.(28+36)÷2。
②一辆汽车从甲地开往乙地,前5时平均每时行60千米,后3时平均每时行56千米,这辆汽车从甲地开往乙地,平均每时行驶多少千米?
[ ]
A.(60+56)÷(5+3);
B.(60+56)÷2;
C.(60×5+56×3)÷(5+3)。
(四)课堂总结(学生总结)
教师:解答求平均数应用题应注意哪些问题?
①明确问题求的是什么平均数;
②总数量÷总份数=平均数。
(五)布置作业课本P15:1,2,3,4,5。
课堂教学设计说明
本节课是在较简单的求平均数应用题的基础上进行的。重点是让学生理解并巩固平均数的意义以及求平均数应用题的解题思路和方法,其中加权算术平均数的计算方法是难点。通过准备题与例1的对比突出重点,学生掌握求平均数的方法,同时培养学生分析、比较的能力。让学生充分讨论、尝试例2,培养学生独立解答问题的能力,从而突破了难点。
本节新课教学分为三部分。
第一部分,教学例1,加深对平均数应用题的解题方法的理解,共分3层。
第一层:由准备题与例1对比,找出异同点;
第二层:由问题出发找出解决问题的方法;
第三层:列出分步和综合算式。
第二部分:教学例2,强调根据题意确定算法,可分3层。
第一层:出示例2,审题找出与例1的异同点;
第二层:分组讨论解题方法;
第三层:列出分步、综合算式。
第三部分:对比例1、例2,找出异同点,从而加深对平均数应用题解题方法的理解。
板书设计(略)