《《因数和倍数》教学设计【优秀7篇】》
教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。下面是小编辛苦为大家带来的《因数和倍数》教学设计【优秀7篇】,您的肯定与分享是对小编最大的鼓励。
《因数和倍数》数学教案 篇1
教学目标
1、知识与技能
掌握因数、倍数的概念,知道因数、倍数的相互依存关系。
2、过程与方法
通过自主探究,使学生学会用因数、倍数描述两个数之间的关系。
3、情感态度与价值观
使学生感悟到数学知识的内在联系的逻辑之美。
教学重难点
教学重点
掌握找一个数的因数、倍数的方法。
教学难点
能熟练地找一个数的因数和倍数。
教学工具
课件、投影
教学过程
一、迁移引入
同学们,在我们的日常生活中,人与人之间存在着许多相互依存的关系,如:佳爸是佳佳的爸爸,佳佳是佳爸的儿子。其实在我们的数学王国里,数与数回见也存在着这种相互依存的关系,请看大平米,认识这些吗?(课件出示:0,1,2,3,4,5……)
这些自然数。(课件去“0”)
去0后这又是什么数?(非零自然数中。)这节课我们就在非零自然数中来研究数与数之间的这种相互依存的关系。
板书:因数和倍数
二、情境创设,探究新知
1、理解整除的意义。
(1)出示例1,在前面学习中,我们见过下面的算式。
12÷2=6 8÷3=2……2 30÷6=5 19÷7=2……5 9÷5=1.8
26÷8=3.25 20÷10=2 21÷21=1 63÷9=7
你能把这些算式分类吗?
(2)分类所得:
第
一
类
12÷2=6 20÷10=2
30÷6=5 21÷21=1
63÷9=7
第
二
类
8÷3=2……2 9÷5=1.8
19÷7=2……5 26÷8=3.25
(3)观察发现,合作交流。
观察算式,说一说谁是谁的倍数,谁是谁的约数。
2、理解因数、倍数的意义。
12÷2=6中,我们就说12是2的倍数,2是12的因数。12÷6=2,所以12是6的倍数,6是12的因数。由此可知:(在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。)
3、总结归纳
(1)在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
(2)因数与倍数是相互依存的关系。
4、注意:
为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括0)。
5、做一做。
下面的4组数中,谁是谁的因数?谁是谁的倍数?
4和24 36÷13 75÷25 81÷9
6、教学例2
18的因数有哪几个?
18的因数有1、2、3、6、9、18。
也可以这样用图表示。
18的因数
1,2,3,
6,9,18
30的因数有哪些?36呢?
7、教学例3
2的倍数有哪些?
2的倍数有2、4、6、8……
2的倍数
2,4,6,
8,10,12,
14,……
3的倍数有哪些?5呢?
8、小组讨论,归纳总结
一个数的最小因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。
一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
课后小结
一个数的最小因数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。
一个数的因数的个数是有限的,最大的因数是它本身。一个数的倍数的个数是无限的。
课后习题
1、填空。
(1)36是4的( )数。
(2)5是25的( )。
(3)2.5是0.5的( )倍。
2、下面各组数中,有因数和倍数关系的有哪些?
(1)18和3 (2)120和60 (3)45和15 (4)33和7
3、24和35的因数都有哪些?
板书
一个数的最小因数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。
一个数的因数的个数是有限的,最大的因数是它本身。一个数的倍数的个数是无限的。
《因数与倍数》小学教案 篇2
教学内容
教材第17页、18页内容。
教学目标
知识目标
1.使学生初步掌握2、5的倍数的特征。
2.使学生知道奇数、偶数的概念。
能力目标
1.会判断一个数是否能被2、5整除。
2.会判断奇数、偶数。
3.培养类推能力及主动获取知识的能力。
情感目标
激发学生的学习兴趣。
教学重点
掌握2、5的倍数的特征及奇数、偶数的概念。
教学难点
灵活运用2、5的倍数的特征及奇数、偶数的概念进行综合判断。
教学过程
一、激趣引入 走进课堂
1.前面我们学习了自然数、整数、因数,后来又学习了倍数,我们都说自己学的很棒,今天我就考考大家
出示:1~100的自然数。
2.导入:
这是1~100的自然数。
你能很快找出2的所有倍数吗,并用蓝笔圈出来。试一试!
3.同桌结组,比试结果。
二、探究新知
1.2的倍数的特征。
你们圈出的这些数和2有什么联系
为什么它们都是2的倍数
这些数是分别用2X1 2X2 2X3 2X4 2X5 ……得来的
请大家观察这些数,你发现这些数有什么特征?
这些数个位上是0、2、4、6、8中的一个。
这个规律正确吗?请同学们任写一些大一点的数验证一下。(学生写数验证,小组内讨论)
学生汇报,师生共同总结:看来判断一个数是不是2的倍数,只要看这个数的个数是不是0、2、4、6、8就可以了。
三、练习 出示课本第20页第一题
自学 奇数、偶数
1、关于一个数是不是2的倍数,还有很多知识,你想知道吗?请你打开课本第17页自学。
你们从书上还知道了些什么?
自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。
0也是偶数。(因为0也是2的倍数,所以也是偶数)
双数指的就是偶数,那么单数指什么呢?
学生说:奇数
2、巩固练习 出示课本第17页做一做
学生口答
根据上面的学习,你们还能想到哪些数学知识呢?
自然数根据是不是2的倍数,可分为奇数和偶数。
因为0、2、4、6、8都是偶数,所以也可以说“个位上是偶数的数都是偶数”。
3、联系生活
在生活中,你在哪儿还见过奇数和偶数?
我的身高148厘米,148就是一个偶数
2008是个偶数
同学们真有心,在我们的生活中经常用奇数、偶数对事物进行分类。
看来奇数、偶数给我们的学习、生活带来不少方便呢。
2、5的倍数的特征。
自主探索5的倍数的特征。
在课本上有100以内数的表格,请同学们打开书,找出5的倍数,看看有什么规律,和你的同桌说一说,并想办法验证你所发现的规律。
师生共同总结:个位上是0或5的数,是5的倍数。
3、既是2的倍数,又是5的倍数的数的特征
判断:下面哪些数是2的倍数?哪些数是5的倍数?哪些数既是2又是5的倍数?(60 30)
60、75、106,30,521
①引导学生思考:一个数既是2的倍数又是5的倍数,这个数有什么特征?
②汇报结果:说说你是怎样判断的?
③引导总结:个位上为0的数既是2的倍数又是5的倍数。
三、巩固发展:
(1)套圈游戏:把下面的数填在圈里。
18 24 25 30 35 36 40 42 45 46 50 65 80 100
①2的倍数:
②5的倍数:
③同时是2和5的倍数:
(2)判断。
①一个自然数不是奇数就是偶数。 ( )
②能被2除尽的数都是偶数。 ( )
③同时是2和5倍数的数,个位上的数字一定是0。 ( )
四、全课小结:
这节课你学到了哪些知识?
《因数和倍数》教学设计 篇3
1. 因数和倍数的定义
2和6是12的因数,12是2的倍数,12也是6的倍数
18的因数有1、18、2、9、3、6
2. 一个数的因数个数是有限的,一个数的倍数有无数个
任何数都有最小的因数1,最大的因数本身,最小的倍数也是本身
3. 2、3和5倍数的特征
2的倍数的数特征是个位是0、2、4、6、8,是2的倍数的数叫偶数,不是2的倍数的数叫奇数
5的倍数的数特征是个位是0或5
3的倍数的数特征是一个数各位上的数字的和是3的倍数,这个数就是3的倍数
4. 只有1和本身两个因数的数叫做质数(或素数)
5. 除了1和本身外还有其它因数的数叫做合数
6. 1既不是质数,也不是合数
7. 100以内的质数总共25个,它们是:
2 3 5 7
11 13 17 19
31 23 37 29
41 43 47 59
61 53 67 79
71 73 97 89
83
补充知识:
1.9的倍数的数特征是一个数各位上的数字的和是9的倍数,这个数就是3的倍数
2.既是2的倍数,又是5的倍数的数的特征是个位必须是0
3.4和25的倍数的特征是末二位是4或25的倍数
4.8和125的倍数的特征是末三位是8和125的倍数
5.如果a和b都是c的倍数,那么a-b和a+b一定也是c的倍数
6.如果a是c的倍数,那么a乘以一个数(0除外)后的积也是c的倍数
7. 偶数+偶数=偶数 偶数-偶数=偶数 偶数×偶数=偶数
偶数+奇数=奇数 偶数-奇数=奇数 偶数×奇数=偶数
奇数+奇数=偶数 奇数-偶数=奇数 奇数×奇数=奇数
奇数-奇数=偶数
无论多少个偶数相加都是偶数
偶数个奇数相加是偶数
奇数个奇数相加是奇数
《因数与倍数》小学教案 篇4
教学目标:
1.学生通过回忆和整理,进一步明确因数和倍数的相关知识,加深认识相关概念之间的联系与区别,能求两个数的公因数和公倍数,并能运用这些知识解决相关实际问题。
2.学生在应用相关知识进行判断和推理的过程中,能说明思考过程,进一步培养归纳概括和演绎推理等思维能力,进一步增强分析问题和解决问题的能力。
3.学生进一步体会数学知识之间的内在联系,感受数学思考的严谨性和数学结论的确定性,激发学习数学的兴趣和学好数学的自信心。
教学重点:
掌握倍数和因数等相关概念,以及应用概念判断、推理。
教学难点:
理解相关概念的联系和区别。
教学过程:
一、揭示课题
1.回顾知识。
提问:上节课,我们已经复习了整数和小数的有关知识。
在整数知识里,我们还学习了因数和倍数,谁能来说说你是怎样理解因数和倍数的?一个数的因数和倍数各有什么特点?
结合学生交流,板书。
2.揭示课题。
引入:这节课,我们复习因数和倍数的相关知识。
通过复习,能进一步了解关于因数和倍数的知识,理解它们之间的联系和区别,并能应用这些知识。
二、基本练习
1.知识梳理。
提高:回想一下,在学习因数和倍数时,我们还学习了哪些相关的知识?
学生回顾,交流,教师适当引导回顾。
提问:2、5、3的倍数各有什么特征?什么叫奇数,什么叫偶像?什么叫质数,什么叫合数?什么叫公因数和最大公因数?什么叫公倍数和最小公倍数?
根据学生回答,板书整理。
2.做练习与实践第10题。
学生独立完成,指名板演。
集体交流,让学生说说找一个数的因数和倍数的方法。
3.做练习与实践第11题。
出示题目,学生直接口答。
提问:怎样判断一个数是不是2的倍数?判断是3和5的倍数呢?
追问:这里哪些是偶数,哪些是奇数?说说你是怎样想的。
4.做练习与实践第12题。
学生先独立写出质数和合数,再指名口答。
追问:最小质数是几?最小的合数呢?
《因数和倍数》教学设计 篇5
教学内容九年义务教育人教版小学数学五年级下册第二单元“倍数和因数”。
教学目标:
1、 通过练习,使学生进一步理解倍数和因数,奇数和偶数,素数和合数的意义。
2、 使学生进一步掌握2、3、5的倍数的特征。
3、 让学生进一步体会探索数的一些特征和方法,培养分析、比较和抽象概括能力,感受数学知识的内在联系。
4、 让学生进一步体会到数学内容的奇妙、有趣,产生对数学知识的好奇心。
练习背景:
学生在练习之前已经初步掌握了倍数、因数、奇数、偶数、素数、合数的意义。掌握了求一个数的倍数或因数的方法及其特点。学生还在学了因数和倍数的基础上发现了2、5、3的倍数的特征,根据特征能判断一个数是否是2、5、3的倍数。学习完这些概念后,很有必要对这部分知识做个梳理与练习,使学生对这些概念有进一步的理解和掌握。所以教材安排了两课时的练习,第一课时练习有关倍数和因数,以及2、3、5的倍数的特征的知识。第二课时主要以练习素数和合数概念为主,以及这些概念的比较与区分。本课是在第一课时练习的基础上进一步的巩固提高练习。通过本课的练习,进一步帮助学生清晰理解各个概念,区别容易混淆的几个概念,提高学生的数学水平。
练习设计:
一、 谈话导入:
同学们,在本单元我们学习了很多概念,上节课我们针对有关倍数、因数的概念以及2、3、5倍数的特征进行了练习,除了这些我们在这单元还学习了什么概念呢?
(设计意图:在练习之前,引导学生对学习的旧知进行回顾,唤起学生对知识的主动回忆,我估计学生都能想到还学习了素数和合数这两个概念。)
指出:今天我们这节课主要就素数和合数概念以及前面的几个概念进行一个综合练习。
二、 基本练习:
1、仔细推敲,对号入座。
在2、15、6、10、45这些数中,谁是谁的因数,谁是谁的倍数?
2、自己举个例子说说谁是谁的因数,谁是谁的倍数?
3、说一说上面这些数中哪些是奇数,哪些是偶数?
(设计意图:这里我列出了5个数字,让学生直接说出谁是谁的因数,谁是谁的倍数,相对于学生根据乘法或除法说出因数与倍数关系要稍微复杂和抽象了一些。这个练习主要帮助学生回顾梳理有关因数和倍数以及奇数和偶数的概念。)
过程及意图:
1、 先自己与同桌说一说,你能和同桌说的不一样吗?
2、 集体交流。
(设计意图√★√:先让学生自己相互说一说,是给学生的思维一个缓冲,由于答案不是唯一的,这里不一定让学生说出全部,可以在集体交流时引导:“还有不一样的吗?”使其完整。教师不需要都板书,可以选择其中一种写一写。)
3、 自己再举例说明因数和倍数关系。
(设计意图:我设计这样一个开放性的练习,是为了让学生对因数和倍数的概念认识地更深入些。注意让多个学生说一说,学生在说一个数的因数或倍数时,提问:这个数的因数或倍数还有哪些?从而回顾因数与倍数的特点。)
4、说说这些数中哪些是奇数哪些又是偶数?
(设计意图:让学生先结合具体的数说说哪些是奇数哪些是偶数,然后引导学生有具体到抽象,回忆出什么叫奇数,什么叫偶数?我们是怎样判断奇数和偶数的?对奇数偶数的概念也做个简单的回顾,为下面这些概念的综合练习做个铺垫。)
二、对比练习
1、 找出下面每组数中的素数。
(1)19 29 39 49
(2)5 15 25 35
(3)17 27 37 47
2、 判断下面的数是素数还是合数,并说说理由。
2 21 11 45 77
(设计意图:这是书上练习六第8题,安排这个练习主要是有关素数和合数的概念的练习,通过练习使学生进一步明确什么叫素数?什么叫合数?掌握判断素数或合数的方法。后面是我自己设计的一个练习,在第一个练习完后用卡片出示,通过这五个数字的判断让学生熟练掌握判断方法。)
过程及意图:
1、 先说一说什么叫素数?什么叫合数?判断一个数是素数还是合数看什么?
(设计意图:在判断之前先帮助学生回顾有关概念及判断方法,为下面的判断练习做个铺垫,我估计一下子让学生判断对于中差生来说可能有些遗忘,一下子不知道如何下手,所以先安排了这样一个说一说。)
2、 学生在书上把素数圈出来。
3、 集体交流。
(设计意图:有了前面的回顾,学生在判断的时候有了目标,这里要注意两个问题,一是,突出素数与合数的比较。如果是素数要让学生说说为什么?如果不是,更要让学生说说为什么不是?二是,要充分利用好学生中的错误资源,让学生在错误中寻找到判断的好方法。我估计在49的判断上学生会出现意见分歧,因为一般情况学生只会去思考除了1和本身是否有因数2、5、3而忽略了有没有因数7,所以在这时要注意在错误中分析原因,并且帮助学生找到判断方法——不仅要看看是否有因数2、3、5还要注意看看是否有因数7,有时甚至还要更大,这里点到为止即可,不需要更多展开。)
4、 比较发现。
问:比一比每组数有什么特点?判断完后你有些什么体会?
(设计意图:这里教材安排的每组数的各位数字都相同,我估计学生这个现象都能发现,关键是让学生谈谈体会,先可以让学生自由地说一说,如果有困难可以问:从中体会到一个数是否是素数与什么无关?而与什么有关?让学生体会与各位数字无关,我们要看这个数因数的个数。因为在以往的教学中,同学们常常会在各位是7或9的数的判断上出现教多的错误。这样使学生对素数的认识更加深刻。)
三、 综合练习
1、用“〇”圈出表中所有的素数,用“△”圈出表中所有的偶数。
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
(设计意图:以往教学下来我发现学生对奇数与素数、偶数与合数往往混淆不清,这是为了区分这些概念而设计的。这里呈现一张具体的表格,让学生根据表格的现象主动区分不同的概念,体会到他们是不同的概念,但它们之间也有一定的联系,素数中有偶数,偶数里有素数。形象直观的表格避免了对这些问题进行抽象的,甚至文字游戏式的机械操练。也有利学生的理解和掌握。)
3、 判断下面的说法正确吗?不对的改正。
(1)只有两个因数的数叫做素数。 ( )
(2)1是素数。 ( )
(3)自然数中除了奇数其他都是偶数。( )
(4)自然数中除了素数其他都是合数。 ( )
(5)所有的偶数都是合数。 ( )
(设计意图:这个练习是对容易混淆的概念,进行比较和区分设计的。通过练习让学生进一步明确概念的区别和联系。)
过程及意图:
1、 用“〇”圈出表中所有的素数
2、 集体校对。
(设计意图:找素数和偶数我估计学生没有多大的困难,在校对过程中,注意引导学生思考这个问题:同学们用“〇”圈出了素数,那没有圈出来的是什么数呢?我估计有些学生马上会脱口而出“都是合数”,而后会有学生发现问题反驳这种观点,设计这个提问一是进一步理解素数、合数的概念,明确1既不是素数也不是合数,也为下面有关自然数的分类做铺垫。)
3、 用“△”圈出表中所有的偶数。
4、 集体校对
(设计意图:这里也同上引导学生思考这个问题:没有打△的都是什么数,让学生进一步明确自然数中不是偶数就是奇数。)
5、 探索规律:观察表格,你有什么发现?你有没有发现什么特别的数?
(设计意图这里改变了书上提问,不直接问:所有的素数都是奇数吗?所有的偶数都是合数吗?而是提了一个开放性的问题,先让学生自己说说自己的想法,我估计通过表格的直观呈现,“2”既打上了“〇”又打上了“△”就形象地说明了2既是素数又是偶数,充分地说明了素数中有偶数,偶数里也有素数。这里表达的方式可以多一些,只要学生说的意思正确即可。)
《倍数和因数》教学设计 篇6
一、教学过程:
(一)动手操作,感受并认识因数与倍数。
1、老师和同学们都在课前准备了几个小正方形,如果用这些小正方形拼成一个长方形,可以怎么拼?(让学生独立拼摆)
2、全班交流,请学生上黑板拼一拼,拼法用乘法算式表示出来。
指出:有三种拼法,列出三个不同的乘法算式,今天我们研究的内容就藏在着三个算式中。
3、教师选择一个算式指出4×3=12,4是12的因数,12是4的倍数,看这个算式还可以说:谁是谁的因数?谁是谁的倍数吗?
4、揭示课题:倍数和因数。
5、看其他两个算式,你还能说什么吗?你觉得哪个算式给你的感觉有些特别?
6、自己写一个乘法算式,让你的同桌说一说谁是谁的因数,谁是谁的倍数,选一些特殊的例子:如0×8=0的形式16÷2=8。辨析:能不能说16是倍数,2是因数。
7、完成想想做做(1)。
8、完成想想做做(2)。(交流:应付元数与4元有什么关系?省略号表示什么意思?从这个省略好你知道了什么?)
9、想想做做(3)。(从中发现了什么?24有那些因数?最大的是几?最小的是几?)
(二)找倍数和因数。
1、找一个数的倍数(让学生自己在纸上写,然后交流:你是怎么找的?)
提问:
(1)3的最小的倍数是几?最大的呢?
(2)3的倍数有无数个,那么该怎么表示?
2、完成试一试。
反思:怎样找一个数的倍数比较方便?一个数的倍数最小是几?找得到最大的倍数吗?
3、找一个数的因数。
先让学生独立找36的因数,再进行交流。
提问:36最小的因数是几?最大的呢?怎样找才能保证不重复不遗漏?对好的方法及时的给以肯定。
完成试一试
4、提问:15的最小因数是几?最大的因数是几?16呢?你有什么发现?
5、巩固练习:
(1)4的倍数有:
(2)25以内4的倍数有:
(3)30的因数有:
(4)15的因数有:
(三)课堂小结:略。
(四)作业布置:
1、6的倍数有:
2、7的倍数有:
3、100以内9的倍数有:
4、24的因数有:
5、11的因数有:
二、教学反思:
本节课重点围绕“理解倍数和因数的含义,能按要求找出一个数的倍数和因数”进行教学。在写一个数的倍数和因数时,要让学生经历探索的过程,在相互交流时,得出最优的方法,在探索倍数和因数的规律时,既不能让学生毫无目的的去探究,也不能把这个结论直接告诉学生。
先出示一些具体的数,从这些具体的数的基础上进行探究,起到了较好的效果。在探究一个数的因数的方法时,先在前面孕伏着除法中也有倍数和因数,为探究一个数的因数埋下了伏笔。这个方法要比倍数的方法难一些,教师要有耐心,把学生的方法全部板书在黑板上,然后通过比较,发现商也是这个数因数,又发现一个数的因数,是成队出现的,所以怎样做到既不重复,又不遗漏,就要有序思考,与前面学过的找规律的方法有机地联系在一起。
《倍数和因数》教学设计 篇7
教学过程:
一、创设情境,引入新课
师:人与人之间存在着许多种关系,你们和你们的妈妈之间是什么关系……
生、母子、母女关系。
师:我和你们的关系是……
生:师生关系。
师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)
二、认识因数与倍数
师:现在我们来研究自然数中数与数之间的关系。请你们用12个小正方形摆成不同的长方形,并根据摆成的不同情况写出乘法算式。
根据学生的汇报板书:
1×12=12 2×6=12 3×4=12
12÷1=12 12÷2=6 12÷3=4
师:在这3组乘算式中,都有什么共同点?
生:第①组每个式子都有1、12这两个数。
生:第②组每个式子都有2、6、12这三个数。
生:第③组每个式子都有3、4、12这三个数。
师:(指着第②组)像这样的乘式子中的三个数之间的关系还有一种说法,你们想知道吗?请看大屏幕
师:2和6与12的关系还可以怎样说呢?
生:2和6是12的因数,12是2的倍数,也是6的倍数。
师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?
生:3、4和12有因数和倍数关系,3和4是12的因数,12是3和4的倍数。
生:我认为1和12也有因数和倍数关系。1是12的因数,12是1的倍数。
师:可以说12是12的因数吗?
生:我认为可以,12×1=12,1和12都是12的因数。
师:说得真好,从上面3组算式中,我们知道1,2,3,4,6,12都是12的因数。
师出示:12÷2=5……2。问:12是2的倍数吗?为什么?
生:我认为不是,因为12除以2有余数。
师:你能举一个算式,并说说谁是谁的倍数,谁是谁的因数吗?
生:2×4=8,2和4是8的因数,8是2和4的倍数。
生:40÷2=20,40是2和20的倍数,2和20是40的因数。
师出示:0×3 0×10
0÷3 0÷10
通过刚才的计算,你有什么发现?
生:我发现0和任何数相乘,都等于0。
生:0除以任何一个数都等于0。
生:我补充,0不能作为除数。
师:所以在研究因数和倍数时,我们所说的数一般指整数,不包括0。
生:我有一个疑问,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系,这两种说法一样吗?
师:这个问题提得好!谁能回答他的问题?
生:我觉得好像不一样,但不知道为什么?
生:我认为不一样,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系。
师:说的真好。这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式中各部分名称中的“因数”,两者可不能混哦!
三、师生交流、合作探究:
1。出示例1:18的因数有哪几个?
从12的因数可以看得出,一个数的因数不止一个,那么我们一起找找看18的因数有哪些?
学生尝试完成并交流汇报,说说你是怎么找的?(18的因数有:1,2,3,6,9,18)
我们在写的时候怎样写才能做到不遗漏、不重复?
(生:用乘法一对一对找,如1×18=18,2×9=18…;用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…)
5。小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?(从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。)
四、“动脑筋出教室”游戏课件
五、课堂练习
1、请你来做小法官
(1)4×9=36,所以36是倍数,9是因数( )
(2)48是6的倍数。 ( )
(3)在13÷4=31中,13是4的倍数。 ( )
(4)6是36的因数。 ( )
(5)在4x0。5=2中,4和0。5是2的因数。 ( )
2、细心填一填
(1)、1的因数是( )
(2)、一个数的最大因数是24这个数是()它的最小的因数是()。
(3)、自然数32有()个因数,它们是( )。
(4)、16的因数有( )
(5)、19的因数只有( )和( )。
3、我最聪明,我来回答
(1)、27的因数有哪些?
(2)、27是哪些数的倍数?
六、课时小结:
本节课大家学习到什么知识,还有什么不明白的地方吗?有什么疑问请提出来我们共同来解决。
七、板书设计
因数和倍数
1×12=12 12÷1=12
2×6=12 12÷2=6
3×4=12 12÷3=4
因为:a×b=c,(a,b,c都是不为0的整数)
所以:a,b都是c的因数,c是a,b的倍数
教学内容:
《义务教育课程标准实验教科书数学(五年级下册)》第12~13页。
教学目标:
1、从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。
2、培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义观点。
3、培养学生的合作意识、探索意识,以及热爱数学学习的情感。
教学重点:
理解因数和倍数的含义。
教学难点:
能准确、全面的求一个数的因数。
教学反思:
教学《因数和倍数》,这是一个非常枯燥的课题,但我巧妙地运用生活中人与人之间的关系,自然引入到数与数之间关系。为了让学生理解因数和倍数的含意,教学过程中,我立足体现一个“实”字,充分应用多媒体的优点,学生从算式中找出能整除的算式,揭示整除、倍数、因数之间的关系,再通过举例去验证倍数与因数之间的联系,在推理中“悟”出知识的规律。学生在学习中实实在在经历了一个探究的过程。“动脑筋出教室”这一游戏的设计,学生在积极参与探讨、质疑、创造的教学活动,既巩固了知识,又享受了数学思维的快乐。
在授课时,我体验到了学生的快乐。当学生用自己的学号说整除、因数、倍数之间的关系时,由于像顺口溜,很有趣。每个学生都在愉快中学会了这节课的知识。