《五年级数学《平行四边形面积》教案(优秀6篇)》
你知道平行四边形的面积要怎么样来求吗?想要去学习一下吗?以下是美丽的小编为家人们找到的五年级数学《平行四边形面积》教案(优秀6篇),欢迎阅读,希望可以帮助到有需要的朋友。
平行四边形的面积教案 篇1
一、教学目标
1知识目标
理解平行四边形的概念;探索并掌握平行四边形的对边相等,对角相等的性质。
2能力目标
在探索过程中发展学生的探究能力,提高学生运用数学知识解决问题的能力;
3情感目标
培养学生合作交流的习惯,提高克复困难的勇气和信心。
二、教学重点、难点
教学重点:探索平行四边形的性质
教学难点:通过操作、思考、归纳出结论
三、教学方法
探索归纳法
四、教学过程
(一)创设情境,引入新课
1.(幻灯片展示)观察图片中有你熟悉的哪种图形?(平行四边形)请你举出自己身边存在的平行四边形的例子。
例如:汽车的防护链,地板砖,篱笆格子等(用幻灯打出实物的照片) 2.观察图形有什么特征?(有两组对边分别平行)
平行四边形的定义:两组对边分别平行的`四边形叫做平行四边形如图:四边形ABCD是平行四边形记作:ABCD今天我们就来探究平形四边形的性质。
(二)讲授新课
1、拼一拼(出示幻灯片)小组合作,探究新知
用两个全等的三角形纸片可以拼出几种形状不同的平行四边形?从拼图中你能得到哪些启示?相对的边、角分别有什么关系?
(让学生实际动手操作,可分组讨论结论,用ppt课件展示)
2、学生分析总结出:平行四边形的对边平行
平行四边形的对边相等
平行四边形的对角相等
平行四边形的邻角互补
用符号语言表示:如图
小结:平行四边形的性质是证明线段相等、角相等的重要依据和方法。 3.用什么方法验证平行四边形:两组对边分别相等
两组对角分别相等
(小组讨论比一比看谁的速度最快、方法最多)
4、例题讲解
如图:小明用一根36m长的绳子围成了一个平行四边形的场地,其中一条边AB长为8m,其他三条边各长多少?
解:∵四边形ABCD是平行四边形
∴AB=CD, AD=BC
∵AB=8m
∴CD=8m
又AB+BC+CD+AD=36
∴ AD=BC=10m
(三)随堂练习(幻灯片展示)
(四)感悟与收获
1.两组对边分别平行的四边形叫做平行四边形。 2.平行四边形的性质:对边平行
对边相等
对角相等
邻角互补
3.解决平行四边形的有关问题经常连结对角线转化为三角形。
(五)作业
(六)板书与设计
(见幻灯片)
《平行四边形的面积》教案设计 篇2
第九册 数 学《平行四边形的面积》教学反思
钟家村小学陈莉
本节课内容是在学生已经学会长方形、正方形的面积计算已掌握平行四边形的特征,会画出平行四边形的底和对应的高的基础上教学。我能根据学生已有的知识水平和认知规律进行教学。
一、渗透“转化”思想,引导探究
通过本节课的学习,要能够为推导三角形、梯形面积的计算公式提供方法迁移。“转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,先通过数方格求面积发现数方格对于大面积的平行四边形来说太麻烦,然后根据观察表格中的数据,引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。
接着,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形长方形的转化过程,以及他们之间的关系,突出了重点,化解了难点。
二、重视操作试验,发展能力
本节课教学我充分让学生参与学习,让学习数方格,让学生剪拼,引导学生参与学习全过程,去主动探求知识,强化学生参与意识,我引导学生运用实验割补法把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。
运用转化的方法推导面积计算公式,可以有多种途径和方法,我没有把学生的思维限制在一种固定或简单的方法上,我尊重学生的想法,结果学生采用几种剪拼方法将平行四边形转化成长方形来推导面积。
三、注重优化练习,拓展思维
练习设计的优化是优化教学过程的一个重要方面。本课教学过程中,注重学练结合,既有坡度又注重变式。
第一题告诉学生底和高,直接求平行四边形面积,规范格式,检验学生是否达到运用公式,解决实际问题。第二题出示含有多余条件的图形题,强调底和高必须对应,学习上更上一个层次。第三题考察学生灵活运用公式求平行四边形的底和高。第四题认识等底等高的平行四边形的面积相等。现不要学生计算,引导学生撕开它们的面积相等吗?并说明理由,让学生明确两个平行四边形共底,根据平行线间的距离处处相等,它们的高也相等。本课练习能促使学生牢固的掌握新知。
《平行四边形的面积》教学反思
在教学设计时,我创设一个把长方形变成平行四边形,猜测面积是否变化的情境,激发学生的探究欲望。学生根据以前学过的知识自然会想到用数方格的方法求面积,但我没想到学生在数平行四边形的底和高时,有些难度,此时我进行了适当的指导,体现了教师的主导作用。
新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”本节课的教学重点为“探究平行四边形的面积公式”,难点设立为“理解平等四边形的面积计算公式的推导过程”。为了突出重点,突破难点,我先引导学生自主探索,然后让学生交流,对学生难以理解的平行四边形与长方形的关系,我又利用课件演示,并让学生在观察的基础上交流评议,最后学生分组边剪拼边说平行四边形面积公式的推导过程。这样让学生亲身经历操作过程,在交流演示中理解掌握了平行四边形面积的求法,在语言描述过程中锻炼了自己的语言表达能力。在这个环节里我注重的是让学生动手实践和自主探索发现规律,让学生经历知识的形成过程,使学生空间观念得到进一步发展。这样不仅让学生学到知识,更重要的是对学生渗透了平移和转化的数学思想方法,培养了学生观察、分析、概括和能力。
我认为本节课的不足之处是:(1)在学生把平行四边形转化成长方形时,没有给学生充裕的时间展示不同的割补方法,局限了学生的思维。应让学生充分展示,从而明确不同的割补方法,其结果是一样的。三种剪法。(2)在学生汇报时,当学生的语言罗嗦时,我有点过急,常把学生的话打断,应允许学生用自己的语言去表达或让学生自己修改语言。(3)对知识的巩固运用做的不够。本打算在基本练习之后,让学生探究把长方形框架拉成平行四边形后什么变了,什么没变,以此拓展学生的能力。但由于在用数格子的方法求面积时,教师应变能力不强,耽误了时间,此题没来得及做,教师本人的能力还需多锻炼。
《平行四边形的面积》教学反思
新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”在《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
一、注重数学专业思想方法的渗透。
在数学教学中,要注重数学专业思想方法的渗透。要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。我在这节课中,先让学生回忆学过了哪些平面图形,想一想长方形的面积是怎样求的?引出你能求平行四边形的面积吗?做到用“旧知”引“新知”,把“旧知”迁移到 “新知”中,有利于有能力的同学向转化的方法靠拢。
二、注重学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。在此,我特别注意强调底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三、注重了师生互动、生生互动
新课程标准提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答。在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。
四、我的遗憾
本节课还有一些不足之处。比如在进行把平行四边形转化为长方形时,让学生理解长方形的长、宽分别和平行四边形的底和高相等是学生推导平行四边形公式的关键。其中有两个学生到演示台上展示剪拼的方法的时候,说发现他们的面积相等。而我只强调了拼后的面积相等这个概念,为什么面积相等?这个关键的问题我却没有追问,本来准备好的演示粘贴过程,由于担心时间不够也省了。这个关键问题仅仅依赖于课件演示,忽视了学生在动手操作中,即将探究出的知识薄而未发,这样就使得学生的操作只停留到了表面,而没有在操作的过程深层次经历知识的形成过程,课件的演示只给了学生形象上的感知,正因为在这个关键问题上疏忽,导致了拓展教学中,一个长方形拉成平行四边形后,有什么变化?这个问题上,学生茫然的情况。其次,学生在剪拼时,只注重结果,没有适时归纳过程。让学生理解只要沿着平行四边形的一条高剪下,都可以拼成一个长方形。由于我担心时间不够,这个问题也被忽视。虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着教师不敢放手现象。课堂上有效的评价语言在本节课中也体现不够完善等等
教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
五年级数学《平行四边形面积》教案 篇3
一 、教材分析
平行四边形是人教版九年义务教育第九册第五单元多边形面积的计算第一小节的内容。几何知识的初步认识贯穿在整个小学数学教案中,是按由易到难的顺序呈现的。平行四边行面积的计算是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边行特征的基础上,进行教案的。而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,扎实其几何知识学习的重要环节。
二、学生分析
新课程沐浴下成长的五年级学生,在灵活开放的课堂中,学生们善于独立思考,乐于合作交流,课上表现极为活跃,语言表达能力较强,十分愿意发表独立见解,有较好的学习数学的能力。本课学生对数格子法、剪割拼补法有了一定的了解,但是,让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系是一个难点,需要学生在探索活动中,循序渐进、由浅入深地进行操作与观察,从而使学生进一步理解平面图形之间的变换关系,发展空间观念
三、教案目标
根据新课标的要求及教材的特点,以“学生的全域发展”作为标准,从“知识与技能,过程与方法,情感、态度与价值观”三个维度确定如下教案目标:
知识目标:
使学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积。
能力目标:
通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。
情感目标:
通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。
四、教案重点难点
依据新课程对图形与空间的教案要突出探究性活动的要求,体现《数学课程》的“过程性”目标,同时根据学生已有的知识水平,我确立了本节课教案的重难点
重点:平行四边形面积计算公式的推导。
难点:使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系。
五、教案方式、学习方式及评价方式
教案方式:
标准中指出:
有效的数学活动不能单纯地靠模仿与记忆,动手操作、自主探索与合作交流是学习数学的`重要方式。本节课,采用了情境教案法和引导探究法,组织学生开展丰富多彩的数学活动。在活动中充分调动学生学习的积极性、主动性,为他们创建一个发现、探索的思维空间,使学生更好地去发现、去创造。
学习方式:
数学学习活动充满着观察、操作、推理、比较、交流 模拟等探索性与挑战性的活动,本课多次鼓励学生自主探究、合作实践,组织学生认真观察、分析和讨论,在解决生活实际问题的过程中,通过动手实践、合作梳理来完成探究任务。
评价方式:
1、恰当评价学生的基础知识和基本技能。
2、注重对学生数学学习过程、学习状况、学习态度的评价。
3、重视对学生探究能力、解决问题能力的评价。
4、评价主体多元化,采用自评、互评、师评相结合的方式。
六 、教具学具准备
教具平行四边形课件长方形
学具学生每人一个任意大小的平行四边形纸片剪刀
七、教案流程
为了能更好地凸显“自主探究”的教案理念,高效完成教案目标,结合本班学生特点,设计如下环节。
(一)结合生活设疑 激发情趣导入
为了跳出陈旧的数学课单纯讲知传道的框架,让学生体会到数学生活的快乐。在新课伊始,我结合书上情境图设疑导入,根据学生的兴趣特征设计了学生在现有知识水平中无法解决的生活实际问题,从而激发了学生积极探求知识奥秘的欲望。在探索的过程中找到解决问题的方法,使学生不是在学习纯粹的数学知识。而是再解决生活中的实际问题。使学生在玩中初步理解了抽象的问题,使课堂教案充满活力。
(二)动手实践,多维探究
首先(课件出示数方格图)要求认真观察,然后填写表格,最后讨论总结出:
即长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等,并得出两个图形面积相同的答案。
这一组实践操作,实际上是组织学生从感性到理性认识长方形的长与平行四边形的底、宽与高相同的内在联系。
学生在充足的时间里进行合作探究,他们学习的主动性和学习的潜能得到充分的发挥,学生的个性得到彰显。汇报交流时,他们争先恐后发表自己的见解,课堂气氛异常活跃,民主、宽松、和谐、愉悦的氛围自然形成,学生获得积极的情感体验,同时,也为下一步推导平行四边面积计算公式做好充分的准备。
(三)抓住重点环节,深入推导梳理
学生认知是由浅入深的,通过动手实践,他们已经知道:两个图形面积相等,长方形的长和平行四边形底相等,宽和高也相等。
平行四边形的面积教案 篇4
教学内容:
教材平行四边形的面积的内容。
知识目标:
通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。
能力目标:
在剪一剪,拼一拼、比一比中发展空间观念;在看一看,想一想中初步感知等积转化的思想方法,提高分析问题、解决问题的能力。
情感目标:
通过活动,激发学习兴趣,培养互相合作、交流、探索的精神,感受数学与生活的密切联系。
教学重点:
掌握平行四边形的面积计算公式,能正确计算平行四边形的面积。教学难点:
初步认识转化的思想方法在研究平行四边形面积时的作用,并培养学生的分析、综合、抽象。概括能力和运用转化的方法解决实际问题的能力。
教具学具:
方格纸、平行四边形卡片、剪刀、三角板、直尺等。
探索新知教学片段:
1、比一比,估一估师:现在我们把平行四边形花坛画到纸上,我们先认识平行四边形的底和高。平行四边形的底和长方形的长一样长,平行四边形的高和长方形的宽一样长,它们的面积哪个比较大?生:一样大。
2、生:长方形比较大。生:平行四边形比较大。 ……
师:大家都有不同的猜测,有很多同学都说一样大,那么,谁的想法正确呢?我们可以用什么方法来验证呢?四人小组讨论。生:可以用数格子的方法。我先数出整块的,然后这些剩下的小块拼一拼,还可以拼成整块的。
师:那么用数方格的方法数数看。数一数,它们的面积各是多少?……
师:哦,你们数的结果是都是72平方米,说明……
生:平行四边形的面积和长方形的面积相等。
师:也就是……
生:平行四边形的面积也是72平方米。
师:长方形的面积我们可以用公式来计算,那平行四边形的面积是不是也有计算公式呢,这就是我们今天要一起探讨的'问题。(板书:平行四边形的面积)
[让学生对“平行四边形面积的计算方法”提出猜想,再进行验证,在获得知识的同时能培养学生思考的深入性和严密性。也可制造悬念,进一步激发探究的欲望。新课标指出:“有效的数学学习活动不能单纯地依赖于模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。”但探究学习并不是任由学生发挥而不加引导的。学生往往在运用已有的知识
解决问题的过程中还存在着某些障碍。这就需要教师相机诱导,及时介入,以保证学生把更多的精力投入到更好的学习活动中去。]
2、师:还有什么方法可以验证这两个图形的面积哪个比较大呢?……生:我用割一割,补一补的方法,把平行四边形象这样剪开,然后再把它补到另一边去。师:非常好,有自己的方法。下面我们用割补法来看看平行四边形的面积有多大?请同学们先仔细观察,然后说说你的发现。
师演示,学生观察平行四边形变成长方形的过程……
师:谁来说说自己的发现?
生:平行四边形割补完变成一个长方形了。
生:平行四边形的底和长方形的长一样长,平行四边形的高和长方形的宽一样长。
3、师:刚才我们把平行四边形转化为长方形时,是沿着平行四边形的什么剪的?大家为什么要沿着高剪开?
生:是沿着平行四边形的高剪的。
师:平行四边形的高有几条?
生:无数条。
师:所以,我们沿着平行四边形的任意一条高剪开,再通过平移,都可以把平行四边形转化成一个长方形。(边说边演示平行四变形通过割补法转化成长方形的过程。)
4、师:观察比较平行四边形和长方形的面积,说说你们发现了什么?
生:平行四边形的底=长方形的长,平行四边形的高=长方形的宽师:我们知道长方形的面积=……
生:长方形的面积=长×宽
生:我猜平行四边形的面积应该与它的底和高有关系。
5、师:现在,谁能完整地说说平行四边形的面积计算公式呢?学生回答,老师板书:平行四边形的面积=底×高
6、师:刚才应用了“转化”的思想,大家都值得表扬。
7、下面请大家想一想,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形底边上的高,平行四边形的面积公式用字母怎样表示呢?
(师板书“S=a×h”)
[在探究过程中,学生自主探索,合作交流,既体现了学生的主体地位,又有助于培养学生观察能力、抽象概括能力,为进一步发展空间观念打下基础。在本环节中,学生体会到独立探究获得的成功喜悦,变枯燥的说教为求知的动力。在教学中给学生留足了自主探索的空间,有在方法上恰当引导,最终达到学习的目的,让学生体验到成功的喜悦。]
8、师小结:面对着求平行四边形面积的问题,我们利用割补的方法把平行四边形转化成学过的长方形,用旧知识解决了新问题,以后我们还要用这种思想方法继续学习其他图形的面积计算。
9、实际运用。
师:知道了平行四边形的面积公式,我们就可以利用它方便地计算平行四边形的面积了。
(1)(出示例1)请大家做一做。
谁来说一说你是怎么做的?
师:通过这道题,请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?学生回答,老师小结:求平行四边形的面积我们只要知道其中一组底和高就能求面积了。
(2)有一块地近似平行四边形,底是43米,高是20.1米。这块地的面积约是多少平方米?(得数保留整数)
[将学生带回到了生活中,练习由易到难,符合儿童的心理需求,大多数学生在运用知识解决问题的时候感觉没什么难处。学生就在运用所学知识给别人帮忙的过程中着实体验了把成功的快乐,体会到“自己的学习是有用的,有价值的。”笛卡儿说过:“最有价值的知识是关于方法的知识。”本节课以探索平行四边形的面积计算公式为明线,以渗透“转化”的数学思想为暗线。两条主线相辅相成,让学生在获取知识的同时,掌握数学学习的方法,从而使数学课堂真正成为学生获得成功和成长的场所。]
教学反思:
动手实践,自主探索与合作交流是学生学习数学的重要方式。在教学中,我为学生解决关键性问题——把平行四边形转化为长方形奠定了数学思想方法的基础。这一设计意图在教学中得到了较好的体现。接着鼓励学生用自已的思维方式大胆地提出猜想,对于学生的猜想,教师均给予鼓励。因为创新思维的火花往往在猜想的瞬间被点燃,不同的猜想结果又激发起学生进行验证的需要,需要同学们作进一步的探索。在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证……
《平行四边形的面积》的教学设计 篇5
教学目标:使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形面积的计算方法;培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生的空间观念,发展其初步推理能力;培养学生的合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。
教学重、难点:探索并掌握平行四边形的面积计算公式及推导过程。
教具学具:课件、平行四边形卡片、剪刀、三角板、直尺等。
教学模式:“我能行”四步教学法。(详见文后注)
教学流程:
课前交流:同学们,你们想了解老师吗?你想知道关于我的什么情况?
预设:老师的年龄是多少?教几年级?
师:我不能直接告诉你,那你们知道你父母的年龄吗?我可以让你们猜猜?为什么这样猜?
生:我的妈妈是(38)岁,年龄差不会有太多的变化,所以许老师的年龄应该是(30)岁。
师:想得真好,许老师就是(30)岁。
师:你们想想,我是怎样把我的年龄告诉你们的,我是把一个不熟悉的许老师,转化成一个熟悉的许老师,看来“转化”是非常有趣的。“转化”不单在生活中应用,在数学课堂上也一样可以应用。 这节课我们就用这种数学“转化”思想来学习本节课。
一、情境导入,确定目标
师:1.在数学课堂上哪些地方用到了“转化”?
预设:应用题三步转化成两步,再转化成一步;求未知数X,开始给出的式子比较复杂,然后一步一步转化成简单的方程。
看来,“转化”是一位非常高深的、不见踪影的高人,在背后帮助着我们。
2、请同学们看这样一个图形(不规则图形,)怎样求这个图形的面积呢?
生:演示方法。
3、师:为什么把它拼成一个长方形呢?
预设:学过长方形面积的计算,而且能够拼成长方形。
这个方法真好,开始的那个图形,不能一下子求出它的面积,但是我们通过“转化”,把一个不规则的图形转化成了长方形,可以求出它的面积。
4、刚才的图形“转化”过程,什么变了,什么没变?
5、请同学们看这个平行四边形,它的面积怎样求呢?请看我们本节课的学习目标。
(1)我会用“转化”的数学思想推导平行四边形的面积计算公式。
(2)我会用平行四边形面积公式解决实际问题。
【设计意图】情境导入就是要创设与教学内容相适应的声景或氛围,激发学生的学习兴趣,吸引学生注意,从而让他们兴趣盎然地进入学习状态。接着出示学习目标,使学生上课伊始就明确学习目标,知道通过本节课学习应该掌握哪些知识,培养什么样的能力等。
二、互动展示,生成问题
师:1.你猜一猜平行四边形的面积会与什么有关?
预设:长方形、正方形、底、高、夹角、相邻的边等。
2、平行四边形的面积与它们都有关系吗?到底有什么样的关系?我们利用手中的平行四边形纸片来试着“转化”求它的面积。
3、请带着问题自学。(课件)
4、四人小组交流一下你是怎样“转化”平行四边形面积的。
【设计意图】通过学生大胆猜测、动手实践,在互动的过程中生成问题有利睛学生掌握解决问题的方法,形成知识规律,更有利于激发学生的求知欲。
三、启发思路,引导归纳
师:1.谁来汇报一下你们小组的发现?你们推导出平行四边形的公式吗?
2、平行四边形的面积怎么算?
3、板书:平行四边形的面积=底×高
4、你是怎样推导的?说一下你的操作过程。
5、剪下来这多余的,这条线是不是随便画的一条线?这是什么?(平行四边形的高)
6、为什么要剪下来,要拼成一个什么图形?(拼成长方形)
7、这个平行四边形与剪拼的长方形之间有什么关系?
预设:平行四边形的面积与长方形的面积相等(板书)
8、剪拼后的长方形的长,是原平行四边形的什么?宽呢?
9、我们学习过用字母来表示数量关系式,请同学们翻开数学书P81自学用字母怎样表示平行四边形的面积。(板书:S=ah)
【设计意图】在生成问题之后,引导学生围绕探究的问题,自己决定探的方法,用自己的思维方式自由地、开放地探究知识,倡导探究、发现学习的方法,把对知识的理解进行整理汇报交流;较难的问题再引导学生进行合作探究性学习,在师生互动和生生互动中解决问题。
四、练习检测,拓展链接
1、练习检测卡一题。
2、课件:判断、选择题、口答列式。
3、练习检测卡二、三题。
4、谈谈你对这节课的收获,好吗?
拓展练习(作业):你能求出这个图形的面积吗?把你的做法和想法画出来,看谁想得方法好,想得方法多。
【设计意图】归纳整理所学新知之后进行练习检测,先进行新知巩固性练习,再进行有坡度的、形式多样的变式和发展性练习,发现问题及进进行矫正和发展性练习,在练习中检测教学目标达成情况。
板书设计:
(注:“我能行四步教学法”是我校开展的优质课教改实验项目之一,这种教学模式注意教学过程的民主化、多元化和学生个性的和谐发展,充分体现师生之间民主平等、亲密合作的教学观和师生观,具体流程为“情境导入,确定目标――互动展示,生成问题――启发思路,引导归纳――练习检测,拓展链接”。)
平行四边形的面积教学设计 篇6
教学目标:
1、探索平行四边形面积的计算方法,会运用“转化”的数学思想方法推导平行四边形的面积计算公式,会计算平行四边形的面积。
2、让学生经历观察、操作、讨论、分析、比较、归纳等教学活动过程,获得积极的数学学习情感,从而发展学生的空间观念,提高学生的数学素养。
教学重点:
探究平行四边形的面积计算公式。
教学难点:
充分理解剪拼成的充分理解剪拼成的长方形与原平行四边形之间和关系。
教学具准备:
平行四边形纸片、尺子、剪刀、课件
教学过程
一、谈话,揭题:
1、谈话:听过曹冲称象的故事吗?曹冲真的称大象吗?
2、揭题:平行四边形的面积。
二、探究新知:
问题(一)要求这个( )的面积,你认为必须知道哪些条件?
1、 同桌交流
2、 反馈:①长边×短边=10×7=70平方厘米
②底×高=10×6=60平方厘米
3、 引发矛盾冲突:同一个平行四边形的面积怎么会有两个答案呢?
4、 学生动手验证(小组合作)
5、 请小组代表说明验证过程
问题(二)为什么要沿着高将平行四边形剪开?
问题(三)剪拼成的长方形的面积是60平方厘米,你怎么知道原平行四边形的面积也是60平方厘米?
问题(四)是否每次计算平行四边形的面积都要进行剪拼转化成长方形来计算?如果要计算一个平行四边形池塘的面积,你还能剪拼吗?
1、 引导观察,平行四边形转化成长方形,除了面积不变外,它们之间还有其它的联系吗?
2、 推导公式:平行四边形的面积=底×高
3、 小结
问题(五)为什么不能用长边乘短边(即邻边相乘)来计算平行四边形的面积?
1、动态演示: ,引导发现周长不变,面积变大了。
2、动态演示: ,发现面积变小了
3、要求平行四边形的面积,现在你认为必须知道哪些条件?
问题(六)是不是所有平行四边形的面积都等于底×高呢?
让学生拿出各自的平行四边形,动手剪拼,看看行不行。
三、应用新知
1、 左图平行四边形的面积=?
2、解决例1:平行四边形花坛的底是6米,高是4米,它的面积是多少?
四、总结:
1、回想一下今天我们是怎样学平行四边形的面积?
2、你还想学习哪些知识呢?