《高二数学巩固累积知识点总结》
高二时期的学习目标主要体现在班级或年级里你应该达到或者超过什么水平,以及你在高中毕业时将要达到什么水平,学到什么知识和技能,考上什么类型的大学等。以下是小编给大家整理的高二数学巩固累积知识点总结,希望大家能够喜欢!
高二数学巩固累积知识点总结1
直线、平面、简单几何体:
1、学会三视图的分析:
2、斜二测画法应注意的地方:
(1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);
(2)平行于x轴的线段长不变,平行于y轴的线段长减半.
(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.
3、表(侧)面积与体积公式:
⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h
⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:
⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=
⑷球体:①表面积:S=;②体积:V=
4、位置关系的证明(主要方法):注意立体几何证明的书写
(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。
(2)平面与平面平行:①线面平行面面平行。
(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线
5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)
⑴异面直线所成角的求法:平移法:平移直线,构造三角形;
⑵直线与平面所成的角:直线与射影所成的角
高二数学巩固累积知识点总结2
直线的倾斜角:
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
直线的斜率:
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。
②过两点的直线的斜率公式。
注意:
(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
直线方程:
1.点斜式:y-y0=k(x-x0)
(x0,y0)是直线所通过的已知点的坐标,k是直线的已知斜率。x是自变量,直线上任意一点的横坐标;y是因变量,直线上任意一点的纵坐标。
2.斜截式:y=kx+b
直线的斜截式方程:y=kx+b,其中k是直线的斜率,b是直线在y轴上的截距。该方程叫做直线的斜截式方程,简称斜截式。此斜截式类似于一次函数的表达式。
3.两点式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)
如果x1=x2,y1=y2,那么两点就重合了,相当于只有一个已知点了,这样不能确定一条直线。
如果x1=x2,y1y2,那么此直线就是垂直于X轴的一条直线,其方程为x=x1,不能表示成上面的一般式。
如果x1x2,但y1=y2,那么此直线就是垂直于Y轴的一条直线,其方程为y=y1,也不能表示成上面的一般式。
4.截距式x/a+y/b=1
对x的截距就是y=0时,x的值,对y的截距就是x=0时,y的值。x截距为a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推导y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b带入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。
5.一般式;Ax+By+C=0
将ax+by+c=0变换可得y=-x/b-c/b(b不为零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析几何中更常用,用方程处理起来比较方便。
高二数学巩固累积知识点总结3
1.定义法:
判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可。
2.转换法:
当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。
3.集合法
在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:
若A?B,则p是q的充分条件。
若A?B,则p是q的必要条件。
若A=B,则p是q的充要条件。
若A?B,且B?A,则p是q的既不充分也不必要条件。
高二数学巩固累积知识点总结相关文章: