首页 > 学习方法 > 高中学习方法 > 高三学习方法 > 高三数学 > 高三数学基础知识学习方法正文

《高三数学基础知识学习方法》

时间:

高中学习方法其实很简单,但是这个方法要一直保持下去,才能在最终考试时看到成效,如果对某一科目感兴趣或者有天赋异禀,那么学习成绩会有明显提高,若是学习动力比较足或是受到了一些积极的影响或刺激,分数也会大幅度上涨。小编为你准备了《高三数学基础知识学习方法》,希望助你一臂之力!

高三数学基础知识学习方法(一)

学数学离不开做题,高三学习更要做题,不做一定量习题是不可能学好数学的,但是要注意以下几个问题:

1.难度适当.现在复习资料多,题多,复习时应按老师的要求.且不能一味做难题、综合题,好高骛远,不但会耗费大量时间,而且遇到不会做题多了就会降低你的自信心,养成容易忽略一些看似简单的基础问题和细节问题,在考试时丢了不丢的分,造成难以弥补的损失.因此,练习时应从自已的实际情况出发,循序渐进.应以基础题、中档题为主,适当做一些综合性较强的题以提高能力和思维品质

2.题贵在精.在可能的情况下多练习一些是好的,但贵在精.首先选题应结合《考试说明》的要求和近几年高考题的考查的方向去选,重点体现“三基”,体现“通性、通法”.其次做题时的思考和总结非常重要,每做一道题都要回想一下自己的解题思路,看看能不能一题多解,举一反三,并注意合理运算,优化解题过程.第三对重点问题要舍得划费时间,多做一些题.第四在复习过程中也要不断做一些应用题,来提高阅读理解能力和解决实际问题的能力,这是高考改革的方向之一.

3.重视改错.有的同学只重视解题的数量而轻视质量,表现在做题后不问对错,尤其老师已经批阅过的也视而不见,这怎么能进步呢?错了不仅要改,还要记下来,分析造成错误的原因和启示,尤其是考试试卷更要注意.只有经过不断的改正错误,日积月累,才能提高.

4.注意总结.不仅包括题型、方法、规律的总结,还要掌握一些基本题.如立体几何中有这样一道:AC和平面所成的角是,AC平面内AC和AB的射影AB成角,设∠BAC=,求证:coscos=cos.这个等式为立体几何中某此题的计算带来了方便.

如对函数f(x)=x+的奇偶性、单调性、极值和图象应熟悉,利用它给求某些解析式的最值带来了方便.

高三数学基础知识学习方法(二)

有的同学说:“课本有什么好看的?还不就是几个定义、定理、公式?”孰不知,就是那么几个定义、定理、公式,却以其深刻严谨的思想内涵,筑起了一幢幢数学大厦,而对数学学习感到困难者,通病之一就是对它缺乏透彻而全面的理解和掌握.所以,全面、深刻地理解和掌握定义、定理、公式是搞好复习,提高成绩的一项重要任务.要用好课本应侧重以下几个方面.

1.对数学概念重新认识,深刻理解其内涵与外延,区分容易混淆的概念.如以“角”的概念为例,课本中出现了不少种“角”,如直线的斜角,两条异面直线所成的角,直线与平面所成的角,复数的辐角主值,夹角、倒角等,它们从各自的定义出法,都有一个确定的取值范围.如两条异面直线所成的角是锐角或直角,而不是钝角,这样保证了它的性.对此理解、掌握了才不会出现概念性错误.

2.尽一步加深对定理、公式的理解与掌握,注意每个定理、公式的运用条件和范围.如用平均值不等式求最值,必须满三个条件,缺一不可.有的同学之所以出错误,不是对平均值不等式的结构不熟悉,就是忽视其应满足的条件.又如棣莫佛定理是对复数三角形式来说的.如数列中的前n项和与无穷数列各项和S(S=)含义是不同的,等等.

3.掌握典型命题所体现的思想与方法.如对等式的证明方法,就给大家提供了求二项式展开式或多项式展开式系数和的普遍方法.

如已知(1-2x)=a+ax+ax+…+ax,那么①a+a+a+…+a=;②|a|+|a|+|a|+…+|a|=.如(x+1)(x+1)(x+1)…(x+1)的展开式所有项的系数之和为.

因此,端正思想,认真看书,全面掌握,并结合其它资料和练习,加深对基础知识的理解,从而为提高解题能力打下坚实的基础.

高三数学基础知识学习方法相关文章

1.高三数学学习方法总结

2.高三数学知识学习方法有哪些

3.高三数学学习方法和技巧大全

4.高三数学学习方法指导大全

5.高三学霸的数学学习方法总结

6.高三数学知识点总结及数学学习方法

7.高三数学的学习方法大全

8.高三年级数学有效学习方法总结

9.高三学好数学的学习方法总结