《基本初等函数的极限【优秀5篇】》
基本初等函数教学反思 篇1
初中我们学习了一次函数、二次函数、反比例函数三类初等函数,必修一中我们又要学习另外三种初等函数----指数函数、对数函数、幂函数。在前两章中我们已经学习了函数的概念、函数的基本性质——单调性、奇偶性,我在教学学过程中就将这些性质和初中学习的函数进行结合,分析讨论这些函数的相关性质。指数函数、对数函数、幂函数的研究也是以这些基本性质为出发点,来进行研究的。实质是对函数性质研究的延续。我主要谈一下我在教学对数函数的图像和性质方面的感受。
指数函数和对数函数间有着密不可分的关系,它们的性质有好多的相似指处,因此在教学过程中,我比较注重培养学生运用对比、类比的数学思想去学习对数函数函数。;同时从数形结合的角度去感性认识对数函数的性质,这样可以把函数的抽象性以更为直观的形式表现出来;在教学过程中,我还适时运用肢体语言让同学们感知函数图像,从而比较自然地使学生能尽快记住函数图像的样子,有了图像性质全部写在图上。数形结合这种重要的数学思想贯穿整个高中数学,应该逐渐使学生养成运用意识。学生对函数性质的把握还是不错的。
但是,对于新知的理解和接受需要一个过程,就像我们人与人之间的交往一样,新朋友的熟悉需要一个认识的过程。由于课程时间安排比较紧,我们不可能停下来认识,一个学期或一个学年后发现好多学生已经将对数函数、指数函数的性质忘记了,碰到了和陌生的一样。我觉得这和我们平时的月考内容安排有关系,我们的月考内容应该是之前的全部学习内容,非本学期的前面的知识要占一定比例,但是我们的安排都是本月学习什么只考什么,前面的根本不涉及。这样前面的东西就慢慢忘了。我们应该在这方面改进一下。
基本初等函数的极限 篇2
基本初等函数在其定义域内极限值等于函数值。cc 常函数 yc limx
指数函数 yaxa0,a1
a1 limax limax0;0a1 limax0 limax xxxx对数函数 ylogaxa0,a1
logax;0a1limlogax,limlogax a1limlogax,limxx0xx0
三角函数
ytanx lim
xk2tanx limxk2tanx
ycotx limcotx limcotx xkxk
反三角函数
xlimarctanx2arctanx;limarccotx0 limarccotxxlimxx2
幂函数 yx
x2定义域为R,例如yx2,limx
1/21/21/2limxlimx0(定义域内的点)0,定义域为,例如,yxxx0
x10,limx1 定义域为,00,,例如yx1,limxx0
x1/20,limx1/2 定义域为0,,例如yx1/2,xlimx0
注:不管的取值,定义域都包括0,
0,limx,limx0;0,limx0,limx xx0xx0
专升本高等数学复习题 篇3
数学分析1试卷(5)
一、(15%)求下列极限
(1)lim(n1232n1tgxsinx1x)limlim(2)(3) 3n0n01x222nx1x
二、(20%)求下列函数的导数
(1)yx3log3x(2)yln(sinx)(3)yexsin2x
(4)y(arcsinx)2(5)yxsinx
三、(10%)用极限的“N”定义证明limsinnn0.
四、(14%)求下列函数的间断点,并说明其类型
(1)f(x)x1(2)f(x)arctg sinxx
五、(13%)叙述函数f(x)在点x0连续的定义。设函数f(x),g(x)在点x0连续且存在某点U0(x0)内有f(x)>g(x),证明f(x0)g(x0)。
六、(13%)叙述函数f(x)在区间I非一致连续的定义。证明函数f(x)xsinx在[0,)非一致连续。
f(x),证明f(x)在[a,b)能达到
七、(15%)设函数f(x)在区间[a,b)连续,且limxb
最小值。
函数极限 篇4
习题
1、按定义证明下列极限:
(1)limx6x5=6;(2)lim(x2-6x+10)=2;x2x
x251;(4)lim(3)lim2xx1x2
(5)limcos x = cos x0 xx04x2=0;
2、根据定义2叙述limf(x)≠ A.xx0
3、设limf(x)= A.,证明limf(x0+h)= A.xx0h0
4、证明:若limf(x)= A,则lim| f(x)| = |A|。当且仅当A为何值时反之也成立? xx0xx0
5、证明定理3.1
6、讨论下列函数在x0→0 时的极限或左、右极限:(1)f(x)=x
x;(2)f(x)= [x]
2x;x0.(3)f(x)=0;x0.1x2,x0.
7、设 limf(x)= A,证明limf(xxx01)= A x
8、证明:对黎曼函数R(x)有limR(x)= 0 , x0∈[0,1](当x0=0或1时,考虑单侧极限)。xx0
习题
1. 求下列极限:
x21(1)lim2(sinx-cosx-x);(2)lim;x02x2x1x22
x21x113x;
lim(3)lim;(4)
x12x2x1x0x22x3
xn1(5)limm(n,m 为正整数);(6)lim
x1xx41
(7)lim
x0
2x3x2
70;
a2xa3x68x5。(a>0);(8)lim
xx5x190
2. 利用敛性求极限:(1)lim
x
xcosxxsinx
;(2)lim2
x0xx4
xx0
3. 设 limf(x)=A, limg(x)=B.证明:
xx0
(1)lim[f(x)±g(x)]=A±B;
xx0
(2)lim[f(x)g(x)]=AB;
xx0
(3)lim
xx0
f(x)A
=(当B≠0时)g(x)B
4. 设
a0xma1xm1am1xam
f(x)=,a0≠0,b0≠0,m≤n,nn1
b0xb1xbn1xbn
试求 limf(x)
x
5. 设f(x)>0, limf(x)=A.证明
xx0
xx0
lim
f(x)=A,其中n≥2为正整数。6.证明limax=1(0
x0
7、设limf(x)=A, limg(x)=B.xx0
xx0
(1)若在某∪(x0)内有f(x) (2)证明:若A>B,则在某∪(x0)内有f(x)>g(x)。8.求下列极限(其中n皆为正整数):(1)lim x0 x x11 lim;(2);nnx0x1xx1x xx2xnn (3)lim;(4)lim x0x0x1 x1 x (5)lim x x(提示:参照例1) x x0 x0 x0 9.(1)证明:若limf(x3)存在,则limf(x)= lim f(x3)(2)若limf(x2)存在,试问是否成立limf(x)=limf(x2)? x0 x0 x0 习题 1、叙述函数极限limf(x)的归结原则,并应用它证明limcos x不存在。n n 2、设f 为定义在[a,+)上的增(减)函数。证明: lim= f(x)存在的充要条件是f在n [a,+)上有上(下)界。3.(1)叙述极限limf(x)的柯西准则; n (2)根据柯西准则叙述limf(x)不存在的充要条件,并应用它证明limsin x不存在。n n 4、设f在∪0(x0)内有定义。证明:若对任何数列{xn}∪0(x0)且limxn=x0,极限limf(xn)都 n n 存在,则所有这极限都相等。提示: 参见定理3.11充分性的证明。5设f为∪0(x0)上的递减函数。证明:f(x0-0)和f(x0+0)都存在,且f(x0-0)=supf(x),f(x0+0)= 0xu x0 0xun(x0) inff(x) 6、设 D(x)为狄利克雷函数,x0∈R证明limD(x)不存在。xx0 7、证明:若f为周期函数,且limf(x)=0,则f(x)=0 x 8、证明定理3.9 习题 1、求下列极限 sin2xsinx3 (1)lim;(2)lim x0x0sinx2x (3)lim x cosxx tanxsinxarctanx lim(5)lim;(6);3x0x0xx sin2xsin2a1 (7)limxsin;(8)lim; xxaxxa ;(4)lim x0 tanx ;x cosx2 (9)lim;(10)lim x0x01cosxx11 sin4x 2、求下列极限 12x (1)lim(1);(2)lim1axx(a为给定实数); nx0x x (3)lim1tanx x0 cotx ;(4)lim 1x ; x01x (5)lim(x 3x22x1);(6)lim(1)x(,为给定实数) n3x1x 3、证明:limlimcosxcoxcos4.利用归结原则计算下列极限:(1)limnsin n x0n x2 xxcos1 2n22 n ;(2) 习题 1. 证明下列各式 (1)2x-x2=O(x)(x→0);(2)x sinxO(x)(x→0); + (3)x1o(1)(x→0); (4)(1+x)n= 1+ nx+o(x)(x→0)(n 为正整数)(5)2x3 + x2=O(x3)(x→∞); (6)o(g(x))±o(g(x))=o(g(x))(x→x0) (7)o(g1(x))·0(g2(x))=o(g1(x)g2(x))(x→x0)2. 应用定理3.12求下列极限: x21x(1)lim(2)lim x01cosxxxcosx x3. 证明定理3.13 4. 求下列函数所表示曲线的渐近线: 13x34 (1)y =;(2)y = arctan x;(3)y = 2 xx2x 5. 试确定a的值,使下列函数与xa当x→0时为同阶无穷小量: (1)sin2x-2sinx;(2) -(1-x);1x (3)tanxsinx;(4) x24x3 6. 试确定a的值,使下列函数与xa当x→∞时为同阶无穷大量: (1) x2x5;(2)x+x2(2+sinx); (3)(1+x)(1+x2)…(1+xn)。7. 证明:若S为无上界数集,则存在一递增数列{xn}s,使得xn→+∞(n→∞) 8. 证明:若f为x→r时的无穷大量,而函数g在某U0(r)上满足g(x)≥K>0,则fg为x→r 时的无穷大量。 9. 设 f(x)~g(x)(x→x0),证明: f(x)-g(x)= o(f(x))或 f(x)-g(x)= o(g(x)) 总 练 习 题 1. 求下列极限: 1 (x[x])lim([x]1)(1)lim;(2) x3 x1 (3)lim(x axbxaxbx) xxa (4)lim x (5)lim xxa x (6)lim xxxx x0 (7)lim nm,m,n 为正整数 nx11xm1x 2. 分别求出满足下述条件的常数a与b: x21 (1)limaxb0 xx1 x(3)limx (2)lim xxx2 x1axb0 x1axb0 x2 3. 试分别举出符合下列要求的函数f: (1)limf(x)f(2);(2)limf(x)不存在。 4. 试给出函数f的例子,使f(x)>0恒成立,而在某一点x0处有limf(x)0。这同极限的xx0 局部保号性有矛盾吗? 5. 设limf(x)A,limg(u)B,在何种条件下能由此推出 xa gA limg(f(x))B? xa 6. 设f(x)=x cos x。试作数列 (1){xn} 使得 xn→∞(n→∞), f(xn)→0(n→∞);(2){yn} 使得 yn→∞(n→∞), f(yn)→0(n→∞);(3){zn} 使得 zn→∞(n→∞), f(zn)→0(n→∞)。7. 证明:若数列{an}满足下列条件之一,则{an}是无穷大数列: (1)limanr1 n (2)lim an1 s1(an≠0,n=1,2,…) nan n2 n2 8. 利用上题(1)的结论求极限: (1)lim1 n 11(2)lim1 nnn 9. 设liman,证明 n (1)lim (a1a2an) nn n (2)若an>0(n=1,2,…),则lima1a2an 10.利用上题结果求极限: (1)limn!(2)lim n In(n!) nn 11、设f为U-0(x0)内的递增函数。证明:若存在数列{xn}U-0(x0)且xn→x0(n→∞),使得 limf(xn)A,则有 n f(x0-0)= supf(x)A 0xU(x0) 12、设函数f在(0,+∞)上满足方程f(2x)=f(x),且limf(x)A。证明:f(x)A,x∈(0,+∞) x 13、设函数f在(0,+∞)此上满足方程f(x2)= f(x),且 f(x)=limf(x)f(1)lim x0 x 证明:f(x)f(1),x∈(0,+∞) 14、设函数f定义在(a,+∞)上,f在每一个有限区间内(a,b)有界,并满足 x lim(f(x1)f(1))A证明 x lim f(x) A x 《数学分析》教案 第三章 函数极限 xbl 第三章 函数极限 教学目的: 1、使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些函数极限的存在性; 3.掌握两个重要极限 和,并能熟练运用; 4、理解无穷小(大)量及其阶的概念,会利用它们求某些函数的极限。教学重(难)点: 本章的重点是函数极限的概念、性质及其计算;难点是海涅定理与柯西准则的应用。 教学时数:16学时 § 1 函数极限概念(3学时) 教学目的:使学生建立起函数极限的准确概念;会用函数极限的定义证明函数极限等有关命题。 教学要求:使学生逐步建立起函数极限的定义的清晰概念。会应用函数极限的定义证明函数的有关命题,并能运用语言正确表述函数不以某实数为极限等相应陈述。 教学重点:函数极限的概念。 教学难点:函数极限的定义及其应用。 一、复习:数列极限的概念、性质等 二、讲授新课: (一)时函数的极限: 《数学分析》教案 第三章 函数极限 xbl 例4 验证 例5 验证 例6 验证 证 由 = 为使 需有 需有 为使 于是, 倘限制 , 就有 例7 验证 例8 验证(类似有 (三)单侧极限: 1.定义:单侧极限的定义及记法。几何意义: 介绍半邻域 《数学分析》教案 第三章 函数极限 xbl 我们引进了六种极限:。以下以极限,为例讨论性质。均给出证明或简证。二、讲授新课: (一)函数极限的性质: 以下性质均以定理形式给出。1.唯一性: 2、局部有界性: 3、局部保号性: 4、单调性(不等式性质): Th 4 若使,证 设 和都有 = (现证对 都存在, 且存在点 的空心邻域),有 註: 若在Th 4的条件中, 改“ 就有 5.6.以 迫敛性: ”为“ 举例说明。”, 未必 四则运算性质:(只证“+”和“ ”) (二)利用极限性质求极限: 已证明过以下几个极限: 《数学分析》教案 第三章 函数极限 xbl 例8 例9 例10 已知 求和 补充题:已知 求和()§ 3 函数极限存在的条件(4学时) 教学目的:理解并运用海涅定理与柯西准则判定某些函数极限的存在性。教学要求:掌握海涅定理与柯西准则,领会其实质以及证明的基本思路。教学重点:海涅定理及柯西准则。教学难点:海涅定理及柯西准则 运用。 教学方法:讲授为主,辅以练习加深理解,掌握运用。本节介绍函数极限存在的两个充要条件。仍以极限 为例。一。Heine归并原则——函数极限与数列极限的关系: Th 1 设函数在,对任何在点 且的某空心邻域 内有定义。则极限都存在且相等。(证) 存Heine归并原则反映了离散性与连续性变量之间的关系,是证明极限不存在的有力工具。对单侧极限,还可加强为 单调趋于 。参阅[1]P70.例1 证明函数极限的双逼原理。7 《数学分析》教案 第三章 函数极限 xbl 教学难点:两个重要极限的证明及运用。 教学方法:讲授定理的证明,举例说明应用,练习。一. (证)(同理有) 例1 例2.例3 例4 例5 证明极限 不存在。二。证 对 有 例6 特别当 等。例7 例8 《数学分析》教案 第三章 函数极限 xbl 三. 等价无穷小: Th 2(等价关系的传递性)。等价无穷小在极限计算中的应用: Th 3(等价无穷小替换法则) 几组常用等价无穷小:(见[2]) 例3 时, 无穷小 与 是否等价? 例4 四。无穷大量: 1、定义: 2、性质: 性质1 同号无穷大的和是无穷大。性质2 无穷大与无穷大的积是无穷大。性质3 与无界量的关系。无穷大的阶、等价关系以及应用, 可仿无穷小讨论, 有平行的结果。3.无穷小与无穷大的关系: 无穷大的倒数是无穷小,非零无穷小的倒数是无穷大 习 题 课(2学时) 一、理论概述: 《数学分析》教案 第三章 函数极限 xbl 例7.求 。注意 时, 且 。先求 由Heine归并原则 即求得所求极限 。例8 求是否存在。和。并说明极限 解; 可见极限 不存在。--32函数极限 篇5