《高一数学寒假作业答案【优秀6篇】》
放假是个一听就非常兴奋的词,但放假往往带有作业,很多同学都觉得作业是个拖油瓶呢,其实作业可以让我们放假回来,不会把知识全部还给老师,还是非常有用的。下面是小编辛苦为大家带来的高一数学寒假作业答案【优秀6篇】,在大家参照的同时,也可以分享一下给您最好的朋友。
高一数学寒假作业答案 篇1
高一数学寒假作业1参考答案:
一、1~5 CABCB 6~10 CBBCC 11~12 BB
二、13 ,
14 (1) ;(2){1,2,3} N; (3){1} ;(4)0 ; 15 -1 16 或 ; ;
或 。
三、17 。{0.-1,1}; 18. ; 19. (1) a2-4b=0 (2) a=-4, b=3 20. 。
高一数学寒假作业2参考答案:
一。1~5 C D B B D 6~10 C C C C A 11~12 B B
二。 13. (1,+∞) 14.13 15 16,
三。17.略 18、用定义证明即可。f(x)的值为: ,最小值为:
19、解:⑴ 设任取 且
即 在 上为增函数。
⑵
20、解: 在 上为偶函数,在 上单调递减
在 上为增函数 又
,
由 得
解集为 。
高一数学寒假作业3参考答案
一、选择题:
1.B 2.C 3.C 4.A 5.C 6.A 7.A 8.D 9.A 10.B 11.B 12.C
二、填空题:
13、 14. 12 15. ; 16.4-a,
三、解答题:
17、略
18、略
19、解:(1)开口向下;对称轴为 ;顶点坐标为 ;
(2)函数的值为1;无最小值;
(3)函数在 上是增加的,在 上是减少的。
20、Ⅰ、 Ⅱ、
高一数学寒假作业4参考答案
一、1~8 C B C D A A C C 9-12 B B C D
二、13、[— ,1] 14、 15、 16、x>2或0
三、17、(1)如图所示:
(2)单调区间为 , 。
(3)由图象可知:当 时,函数取到最小值
18、(1)函数的定义域为(—1,1)
(2)当a>1时,x (0,1) 当0
19、 解:若a>1,则 在区间[1,7]上的值为 ,
最小值为 ,依题意,有 ,解得a = 16;
若0
,值为 ,依题意,有 ,解得a = 。
综上,得a = 16或a = 。
20、解:(1) 在 是单调增函数
,
(2)令 , , 原式变为: ,
, , 当 时,此时 , ,
当 时,此时 , 。
高一数学寒假练习题答案 篇2
一、选择题(每题4分,共40分)
二、填空题(每题3分,共18分)
11、 4,9,16 12、 ,11,0 13、32
14、 x|x3或x4 15 、 m1 16、4关于高一数学的题
三、解答题(每题10分,共40分)
17、解:由题意得A4,2,B2,3根据B∩C≠Φ,A∩C=Φ,得3C,则: 93mm2190,解得m1=5,m2= —2经检验m2= —2
18、由xf(x)2x22得方程xaxb2x有两个等根22 2
根据韦达定理x1x22a44
x1x2b484 解得a422 所以f(x)=x-42x+484 b484
19解:由ABA,B得B1或1或1,1
当B1时,方程x2axb0有两个等根1,由韦达定理解得2a1 b1
a1 b1
a0 b12当B1时,方程x2axb0有两个等根—1,由韦达定理解得当B1,1时,方程x2axb0有两个根—1、1,由韦达定理解得2
x3x1 20、由A=B得解得 或 2y2y6_yx33x2xyy1,
高一数学寒假作业答案 篇3
参考答案
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 D D D A D D B C A C B C
13、 ; 14. 4 ; 15. 0.4; 16. ②③
17、(1)∵A中有两个元素,∴关于 的方程 有两个不等的实数根,
∴ ,且 ,即所求的范围是 ,且 ;……6分
(2)当 时,方程为 ,∴集合A= ;
当 时,若关于 的方程 有两个相等的实数根,则A也只有一个元素,此时 ;若关于 的方程 没有实数根,则A没有元素,此时 ,
综合知此时所求的范围是 ,或 。………13分
18 解:
(1) ,得
(2) ,得
此时 ,所以方向相反
19、解:⑴由题义
整理得 ,解方程得
即 的不动点为-1和2. …………6分
⑵由 = 得
如此方程有两解,则有△=
把 看作是关于 的二次函数,则有
解得 即为所求。 …………12分
20、解: (1)常数m=1…………………4分
(2)当k<0时,直线y=k与函数 的图象无交点,即方程无解;
当k=0或k 1时, 直线y=k与函数 的图象有唯一的交点,
所以方程有一解;
当0
所以方程有两解。…………………12分
21、解:(1)设 ,有 , 2
取 ,则有
是奇函数 4
(2)设 ,则 ,由条件得
在R上是减函数,在[-3,3]上也是减函数。 6
当x=-3时有最大值 ;当x=3时有最小值 ,
由 , ,
当x=-3时有最大值6;当x=3时有最小值-6. 8
(3)由 , 是奇函数
原不等式就是 10
由(2)知 在[-2,2]上是减函数
原不等式的解集是 12
22、解:(1)由数据表知 ,
(3)由于船的吃水深度为7米,船底与海底的距离不少于4.5米,故在船航行时水深 米,令 ,得 。
解得 。
取 ,则 ;取 ,则 。
故该船在1点到5点,或13点到17点能安全进出港口,而船舶要在一天之内在港口停留时间最长,就应从凌晨1点进港,下午17点离港,在港内停留的时间最长为16小时。
高一数学寒假作业答案 篇4
指数与指数幂的运算一
1、将532写为根式,则正确的是( )
A.352 B.35
C.532 D.53
解析:选D.532=53.
2、根式 1a1a(式中a>0)的分数指数幂形式为( )
A.a-43 B.a43
C.a-34 D.a34
解析:选C.1a1a= a-1•(a-1)12= a-32=(a-32)12=a-34.
3、(a-b)2+5(a-b)5的值是( )
A.0 B.2(a-b)
C.0或2(a-b) D.a-b
解析:选C.当a-b≥0时,
原式=a-b+a-b=2(a-b);
当a-b<0时,原式=b-a+a-b=0.
4、计算:(π)0+2-2×(214)12=________.
解析:(π)0+2-2×(214)12=1+122×(94)12=1+14×32=118.
答案:118
对数与对数运算训练二
1.logab=1成立的条件是( )
A.a=b B.a=b,且b>0
C.a>0,且a≠1 D.a>0,a=b≠1
解析:选D.a>0且a≠1,b>0,a1=b.
2、若loga7b=c,则a、b、c之间满足( )
A.b7=ac B.b=a7c
C.b=7ac D.b=c7a
解析:选B.loga7b=c⇒ac=7b,∴b=a7c.
3、如果f(ex)=x,则f(e)=( )
A.1 B.ee
C.2e D.0
解析:选A.令ex=t(t>0),则x=lnt,∴f(t)=lnt.
∴f(e)=lne=1.
4、方程2log3x=14的解是( )
A.x=19 B.x=x3
C.x=3 D.x=9
解析:选A.2log3x=2-2,∴log3x=-2,∴x=3-2=19.
对数与对数运算训练三
q.若log2(log3x)=log3(log4y)=log4(log2z)=0,则x+y+z的值为( )
A.9 B.8
C.7 D.6
解析:选A.∵log2(log3x)=0,∴log3x=1,∴x=3.
同理y=4,z=2.∴x+y+z=9.
2、已知logax=2,logbx=1,logcx=4(a,b,c,x>0且≠1),则logx(abc)=( )
A.47 B.27
C.72 D.74
解析:选D.x=a2=b=c4,所以(abc)4=x7,
所以abc=x74.即logx(abc)=74.
3、若a>0,a2=49,则log23a=________.
解析:由a>0,a2=(23)2,可知a=23,
∴log23a=log2323=1.
答案:1
4、若lg(lnx)=0,则x=________.
解析:lnx=1,x=e.
答案:e
高一数学寒假作业答案 篇5
一、选择题
1、已知f(x)=x-1x+1,则f(2)=()
A.1B.12C.13D.14
【解析】f(2)=2-12+1=13.X
【答案】C
2、下列各组函数中,表示同一个函数的是()
A.y=x-1和y=x2-1x+1
B.y=x0和y=1
C.y=x2和y=(x+1)2
D.f(x)=(x)2x和g(x)=x(x)2
【解析】A中y=x-1定义域为R,而y=x2-1x+1定义域为{x|x≠1};
B中函数y=x0定义域{x|x≠0},而y=1定义域为R;
C中两函数的解析式不同;
D中f(x)与g(x)定义域都为(0,+∞),化简后f(x)=1,g(x)=1,所以是同一个函数。
【答案】D
3、用固定的速度向如图2-2-1所示形状的瓶子中注水,则水面的高度h和时间t之间的关系是()
图2-2-1
【解析】水面的高度h随时间t的增加而增加,而且增加的速度越来越快。
【答案】B
4、函数f(x)=x-1x-2的定义域为()
A.[1,2)∪(2,+∞)B.(1,+∞)
C.[1,2]D.[1,+∞)
【解析】要使函数有意义,需
x-1≥0,x-2≠0,解得x≥1且x≠2,
所以函数的定义域是{x|x≥1且x≠2}。
【答案】A
5、函数f(x)=1x2+1(x∈R)的值域是()
A.(0,1)B.(0,1]C.[0,1)D.[0,1]
【解析】由于x∈R,所以x2+1≥1,0<1x2+1≤1,
即0
【答案】B
二、填空题
6、集合{x|-1≤x<0或1
【解析】结合区间的定义知,
用区间表示为[-1,0)∪(1,2]。
【答案】[-1,0)∪(1,2]
7、函数y=31-x-1的定义域为________.
【解析】要使函数有意义,自变量x须满足
x-1≥01-x-1≠0
解得:x≥1且x≠2.
∴函数的定义域为[1,2)∪(2,+∞)。
【答案】[1,2)∪(2,+∞)
8、设函数f(x)=41-x,若f(a)=2,则实数a=________.
【解析】由f(a)=2,得41-a=2,解得a=-1.
【答案】-1
三、解答题
9、已知函数f(x)=x+1x,
求:(1)函数f(x)的定义域;
(2)f(4)的值。
【解】(1)由x≥0,x≠0,得x>0,所以函数f(x)的定义域为(0,+∞)。
(2)f(4)=4+14=2+14=94.
10、求下列函数的定义域:
(1)y=-x2x2-3x-2;(2)y=34x+83x-2.
【解】(1)要使y=-x2x2-3x-2有意义,则必须-x≥0,2x2-3x-2≠0,解得x≤0且x≠-12,
故所求函数的定义域为{x|x≤0,且x≠-12}。
(2)要使y=34x+83x-2有意义,
则必须3x-2>0,即x>23,
故所求函数的定义域为{x|x>23}。
11、已知f(x)=x21+x2,x∈R,
(1)计算f(a)+f(1a)的值;
(2)计算f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)的值。
【解】(1)由于f(a)=a21+a2,f(1a)=11+a2,
所以f(a)+f(1a)=1.
(2)法一因为f(1)=121+12=12,f(2)=221+22=45,f(12)=(12)21+(12)2=15,f(3)=321+32=910,f(13)=(13)21+(13)2=110,f(4)=421+42=1617,f(14)=(14)21+(14)2=117,
所以f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=12+45+15+910+110+1617+117=72.
法二由(1)知,f(a)+f(1a)=1,则f(2)+f(12)=f(3)+f(13)=f(4)+f(14)=1,即[f(2)+f(12)]+[f(3)+f(13)]+[f(4)+f(14)]=3,
而f(1)=12,所以f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=72.
高一数学寒假作业答案 篇6
1、函数f(x)=x的奇偶性为()
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.非奇非偶函数
解析:选D.定义域为{x|x≥0},不关于原点对称。
2、下列函数为偶函数的是()
A.f(x)=|x|+xB.f(x)=x2+1x
C.f(x)=x2+xD.f(x)=|x|x2
解析:选D.只有D符合偶函数定义。
3、设f(x)是R上的任意函数,则下列叙述正确的是()
A.f(x)f(-x)是奇函数
B.f(x)|f(-x)|是奇函数
C.f(x)-f(-x)是偶函数
D.f(x)+f(-x)是偶函数
解析:选D.设F(x)=f(x)f(-x)
则F(-x)=F(x)为偶函数。
设G(x)=f(x)|f(-x)|,
则G(-x)=f(-x)|f(x)|。
∴G(x)与G(-x)关系不定。
设M(x)=f(x)-f(-x),
∴M(-x)=f(-x)-f(x)=-M(x)为奇函数。
设N(x)=f(x)+f(-x),则N(-x)=f(-x)+f(x)。
N(x)为偶函数。
4、奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的值为8,最小值为-1,则2f(-6)+f(-3)的值为()
A.10B.-10
C.-15D.15
解析:选C.f(x)在[3,6]上为增函数,f(x)max=f(6)=8,f(x)min=f(3)=-1.∴2f(-6)+f(-3)=-2f(6)-f(3)=-2×8+1=-15.
5.f(x)=x3+1x的图象关于()
A.原点对称B.y轴对称
C.y=x对称D.y=-x对称
解析:选A.x≠0,f(-x)=(-x)3+1-x=-f(x),f(x)为奇函数,关于原点对称。
6、如果定义在区间[3-a,5]上的函数f(x)为奇函数,那么a=________.
解析:∵f(x)是[3-a,5]上的奇函数,
∴区间[3-a,5]关于原点对称,
∴3-a=-5,a=8.
答案:8
7、已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx()
A.是奇函数
B.是偶函数
C.既是奇函数又是偶函数
D.是非奇非偶函数
解析:选A.g(x)=x(ax2+bx+c)=xf(x),g(-x)=-x•f(-x)=-x•f(x)=-g(x),所以g(x)=ax3+bx2+cx是奇函数;因为g(x)-g(-x)=2ax3+2cx不恒等于0,所以g(-x)=g(x)不恒成立。故g(x)不是偶函数。
8、奇函数y=f(x)(x∈R)的图象点()
A.(a,f(-a))B.(-a,f(a))
C.(-a,-f(a))D.(a,f(1a))
解析:选C.∵f(x)是奇函数,
∴f(-a)=-f(a),
即自变量取-a时,函数值为-f(a),
故图象点(-a,-f(a))。
9.f(x)为偶函数,且当x≥0时,f(x)≥2,则当x≤0时()
A.f(x)≤2B.f(x)≥2
C.f(x)≤-2D.f(x)∈R
解析:选B.可画f(x)的大致图象易知当x≤0时,有f(x)≥2.故选B.