《高中数学单元教学设计(9篇)》
在教学工作者实际的教学活动中,可能需要进行教学设计编写工作,教学设计是一个系统化规划教学系统的过程。那么大家知道规范的教学设计是怎么写的吗?以下是人见人爱的小编分享的高中数学单元教学设计(9篇),希望能够给予您一些参考与帮助。
高中数学教学设计题模板 篇1
高中数学教学设计——函数的奇偶性
函数的奇偶性是函数的重要性质,是对函数概念的深化。它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称。这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析。教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义。然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例。最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系。这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性。 教学目标
1、通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力。
2、理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性。
3、在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的。 任务分析
这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数 ,(k≠0),二次函数y=ax,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解。在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔。对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数。关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果。 教学设计
一、问题情景
1、观察如下两图,思考并讨论以下问题:
(1)这两个函数图像有什么共同特征?
(2)相应的两个函数值对应表是如何体现这些特征的? 可以看到两个函数的图像都关于y轴对称。从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同。
对于函数f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1)。事实上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x)。此时,称函数y=x2为偶函数。
2、观察函数f(x)=x和f(x)= 的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征。
22可以看到两个函数的图像都关于原点对称。函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x)。此时,称函数y=f(x)为奇函数。
二、建立模型
由上面的分析讨论引导学生建立奇函数、偶函数的定义 1.奇、偶函数的定义
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数。如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数。
2、提出问题,组织学生讨论
(1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗? (f(x)不一定是偶函数)
(2)奇、偶函数的图像有什么特征?
(奇、偶函数的图像分别关于原点、y轴对称) (3)奇、偶函数的定义域有什么特征? (奇、偶函数的定义域关于原点对称)
三、解释应用 [例 题]
1、判断下列函数的奇偶性。
注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1]。
2、已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式。
解:(1)任取x<0,则-x>0,∴f(-x)=-x(1-x),
而f(x)是奇函数,∴f(-x)=-f(x)。∴f(x)=x(1-x)。
(2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3、已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论。
解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下:
任取x1>x2>0,则-x1<-x2<0.
∵f(x)在(-∞,0)上是减函数,∴f(-x1)>f(-x2)。 又f(x)是偶函数,∴f(x1)>f(x2)。
∴f(x)在(0,+∞)上是增函数。
思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?
[练 习]
1、已知:函数f(x)是奇函数,在[a,b]上是增函数(b>a>0),问f(x)在[-b,-a]上的单调性如何。
2.f(x)=-x3|x|的大致图像可能是(
)
3、函数f(x)=ax2+bx+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(x)是偶函数。(2)函数f(x)是奇函数。 4.设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式。
四、拓展延伸
1、有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2.设f(x),g(x)分别是R上的奇函数,偶函数,试研究: (1)F(x)=f(x)·g(x)的奇偶性。 (2)G(x)=|f(x)|+g(x)的奇偶性。
3、已知a∈R,f(x)=a- ,试确定a的值,使f(x)是奇函数。
4、一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?
高中数学的教学设计5 篇2
前言
为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在20xx年由福建省普通教育教学研究室组织,举办了一次教学设计大赛活动。这次活动数学学科高中组共收到有49篇教学设计文章。获奖文章推荐评审专家组本着公平、公正的原则,经过认真的评审,全部作品均评出了相应的奖项;专家组还为获得一、二等奖的作品撰写了点评。本稿收录的作品全部是参加此次福建省教学设计竞赛获奖作者的文章。按照征文的规则,我们对入选作品的格式作了一些修饰,并经过适当的整合,以飨读者。
在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的。部分体现大纲教材内容的文章则排在后面。
不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程。书中每一篇的教学设计都耐人寻味,都能带给我们许多遐想和启迪。你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家。谢谢你们!
1、集合与函数概念实习作业
一、教学内容分析
《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。-----《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。
二、学生学习情况分析
该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。
三、设计思想
《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。
四、教学目标
1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;
2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;
3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。
五、教学重点和难点
重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;
难点:培养学生合作交流的能力以及收集和处理信息的能力。
六、教学过程设计
【课堂准备】
1.分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。
2.选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。
高中数学教学设计题模板 篇3
教学设计
题目:《等差数列》教学设计
考生姓名:赵春丽 设计科目:数学
学 号: 41005211 专业班级:数学四班
高中数学教学设计
学科:数学 年级:高二 课题名称:等差数列
一、课程说明
(一) 教材分析:此次一对一家教所使用教材为北师大版高中数学必修5。辅导内容为第一章第二节等差数列。前一节的内容为数列,学生已初步了解到数列的概念,知道什么是首项,什么是通项等等。以及了解到什么是递增数列,什么是递减数列。通过第一节的学习的铺垫,可以让学生更自主的探究,学习等差数列。而我也是在这些基础上为她讲解第二节等差数列。 (二) 学生分析:此次所带学生是一名高二的学生。聪明但是不踏实,做题浮躁。基础知识掌握不够牢靠,知识的运用能力较差,分析能力较弱,解题思路不清。每次她遇到会的题,就快快的草率做完,总会有因马虎而犯的错误。遇到稍不会的,总是很浮躁,不能冷静下来慢慢思考。就由略不会变成不会。但她也是个虚心听教的孩子,给她讲课,她也会很认真地听讲。 (三) 教学目标:
1、通过教与学的配合,让她能够懂得什么是等差数列,以及等差数列的通项公式。
2、通过对公式的推导,让她加深对内容的理解,以及学会自己对公式的推导。并且能够灵活运用。
3、在教学中让她通过对公式的推导来明白推理的艺术,并且培养她学习,做题条理清晰,思路缜密的好习惯。
4、让她在学习,做题中一步步抽丝剥茧,寻找解决问题的方法,培养她敢于面对数学学习中的困难,并培养她对克服困难和运用知识。耐心地解决问题。
5、让她在学习中发现数学的独特的美,能够爱上数学这门课。并且认真对待,自主学习。 (四) 教学重点: 1.让学生正确掌握等差数列及其通项公式,以及其性质。并能独立的推导。
2、能够灵活运用公式并且能把相应公式与题相结合。
(五) 教学难点:
1、让学生掌握公式的推导及其意义。 2.如何把所学知识运用到相应的题中。
二、课前准备
(一) 教学器材
对于一对一教教采用传统讲课。一张挂历。
(二)教学方法
通过对生活中的有规律数据的观察来提出问题,让学生结合前一节所学,思考有什么规律。从生活中着手有利于激发学生的兴趣爱好,并能更积极地学习。让学生先独立的思考,不仅能让她对所学知识映像更为深刻,并且培养她的缜密思维。让她回答后,我再帮助她纠正,并且让她提出心中所虑。经过我给她讲完课后,让她回答自己先前的疑虑。并且让她自己总结,得出结论。最后让她勤加练习。以一种“提出问题—探究问题—学习知识—解答问题—得出结论—强加训练”的模式方法展开教学。
(三) 课时安排
课时大致分为五部分:
1、联系实际提出相关问题,进行思考。 2.以我教她学的模式讲授相关章节知识。
3、让学生练习相关习题,从所学知识中找其相应解题方案。 4.学生对知识总结概括,我再对其进行补充说明。 5.布置作业,让她课后多做练习。
三、课程设计 (一) 提出问题 【引入】根据我们的挂历上,一个月的日期数。通过观察每一行日期和每一列日期它们有什么规律?
思考 1) 2) 3) 1,3,5,7,9.。.。.。.
2,4,6,8,10.。.。.。.
6,6,6,6,6.。.。.。
这些每一行有什么规律?
(二) 分析问题并讲解
1、通过观察每一个数与前一个数相差为同一个常数。再结合前一节所学数列的定义总结出“每一项与前一项的差为同一个常数,我们称这样的数列为等差数列。”并且得出“这个常数为等差数列的公差。”
2、设首项为 a1 ,公差为d。由思考题 1) 2) 3)可观察出什么?由学生通过她的发现来推导总结出
ana1(n1)dnd(a1d
3、通过分析通项公式的特点,做下题(学生自己分析,思考来做。) 例:已知在等差数列{an}中,a520,a2035,试求出数列的通项公式?
通过学生做题再分析总结,用详细的语言讲解总结等差数列的性质: 等差数列{an},{bn} 1)
ana1anamd(nm1,n,mN)。
n1nm2) 若mnpq(m,n,p,qN)
pq则2anapaq。 则amanapaq(反之不真)。 3) 若mn,2m4) am,amk,am2k,am3k,,amnk也构成等差数列,公差为kd。
5) a1a2am,am1am2a2m,a2m1a2m2a3m,也构成等差数列,其公差为md。
26) 数列{can差数列。 7)
d}为等差数列,{anbn},{anbn}为等a1ana2an1a3an2akan1k
让学生根据所讲性质做练习题 练习: 1) a1a4a715,a2a4a645
{an}为等差数列,求an?
2) 已知等差数列{an} , a133,a775
求a2,a3,a4,a5,a6及an?
4、由以上公式,性质,让学生总结。讲解等差数列的定义。并且掌握数列的递增,递减与公差d的关系。 5.总结,串讲当日所学
给出题目:12349899100 让她求其和Sn,并思考如何快速计算?
(三) 布置作业
1、总结当日所学。 2.做练习册上章节习题。
3、根据当日所学以及课上所讲求 的思考题,找出快速运算方法,并引导预习等差数列前n项和。
四、设计理念
以一种最简便,易懂的方式让学生来学习,一切以让学生正确掌握知识,并能正确运用为理念。并能充分调动学生和家教老师的积极性为理念来设计。
五、教学设计反思
本节课教程内容较难,是下一节等差数列前n项和的铺垫。此节课学习通过联系实际,把数学融入到生活中,从生活中探究学习数学。并提出问题,分析问题。把主动权交给学生,由她先独立思考总结,再由我给她正确讲解总结,然后再让她做相应练习题,课后再认真总结。这样可以加强她学习的主动性,更有利于她对知识的消化,吸收。这种方法同时可以培养学生的思维能力,让她从自主学习中探索适合自己的学习方法,培养她独立思考的能力。让她更深刻的了解知识内涵,巩固所学。使她能灵活运用所学。
教学设计要符合学生特点,才能更好地帮助学生学习。
高中数学教学设计范例 篇4
一、概述
教材内容:等比数列的概念和通项公式的推导及简单应用 教材难点:灵活应用等比数列及通项公式解决一般问题 教材重点:等比数列的概念和通项公式
二、教学目标分析
1、 知识目标
1)
2) 掌握等比数列的定义 理解等比数列的通项公式及其推导
2、能力目标
1)学会通过实例归纳概念
2)通过学习等比数列的通项公式及其推导学会归纳假设
3)提高数学建模的能力
3、情感目标:
1)充分感受数列是反映现实生活的模型
2)体会数学是来源于现实生活并应用于现实生活
3)数学是丰富多彩的而不是枯燥无味的
三、教学对象及学习需要分析
1、 教学对象分析:
1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。
2)对归纳假设较弱,应加强这方面教学
2、学习需要分析:
四。 教学策略选择与设计
1、课前复习
1)复习等差数列的概念及通向公式
2)复习指数函数及其图像和性质
2、情景导入
高中数学教学设计题模板 篇5
教材分析
圆是学生在初中已初步了解了圆的知识及前面学习了直线方程的基础上来进一步学习《圆的标准方程》,它既是前面圆的知识的复习延伸,又是后继学习圆与直线的位置关系奠定了基础。因此,本节课在本章中起着承上启下的重要作用。
教学目标
1、知识与技能:探索并掌握圆的标准方程,能根据方程写出圆的坐标和圆的半径。
2、过程与方法:通过圆的标准方程的学习,掌握求曲线方程的方法,领会数形结合的思想。
3、情感态度与价值观:激发学生学习数学的兴趣,感受学习成功的喜悦。
教学重点难点
以及措施
教学重点:圆的标准方程理解及运用
教学难点:根据不同条件,利用待定系数求圆的标准方程。
根据教学内容的特点及高一年级学生的年龄、认知特征,紧紧抓住课堂知识的结构关系,遵循“直观认知――操作体会――感悟知识特征――应用知识”的认知过程,设计出包括:观察、操作、思考、交流等内容的教学流程。并且充分利用现代化信息技术的教学手段提高教学效率。以此使学生获取知识,给学生独立操作、合作交流的机会。学法上注重让学生参与方程的推导过程,努力拓展学生思维的空间,促其在尝试中发现,讨论中明理,合作中成功,让学生真正体验知识的形成过程。
学习者分析
高一年级的学生从知识层面上已经掌握了圆的相关性质;从能力层面具备了一定的观察、分析和数据处理能力,对数学问题有自己个人的看法;从情感层面上学生思维活跃积极性高,但他们数学应用意识和语言表达的能力还有待加强。
教法设计
问题情境引入法启发式教学法讲授法
学法指导
自主学习法讨论交流法练习巩固法
教学准备
ppt课件导学案
教学环节
教学内容
教师活动
学生活动
设计意图
情景引入
回顾复习
(2分钟)
1、观赏生活中有关圆的图片
2、回顾复习圆的定义,并观看圆的生成flas_。
提问:直线可以用一个方程表示,那么圆可以用一个方程表示吗?
教师创设情景,引领学生感受圆。
教师提出问题。引导学生思考,引出本节主旨。
学生观赏圆的图片和动画,思考如何表示圆的方程。
生活中的图片展示,调动学生学习的积极性,让学生体会到园在日常生活中的广泛应用
自主学习
(5分钟)
1、介绍动点轨迹方程的求解步骤:
(1)建系:在图形中建立适当的坐标系;
(2)设点:用有序实数对(x,y)表示曲线上任意一点M的坐标;
(3)列式:用坐标表示条件P(M)的方程;
(4)化简:对P(M)方程化简到最简形式;
2、学生自主学习圆的方程推导,并完成相应学案内容,
教师介绍求轨迹方程的步骤后,引导学生自学圆的标准方程
自主学习课本中圆的标准方程的推导过程,并完成导学案的内容,并当堂展示。
培养学生自主学习,获取知识的能力
合作探究(10分钟)
1、根据圆的标准方程说明确定圆的方程的条件有哪些?
2、点M(x0,y0)与圆(x-a)2+(y-b)2=r2的关系的判断方法:
(1)点在圆上
(2)点在圆外
(3)点在圆内
教师引导学生分组探讨,从旁巡视指导学生在自学和探讨中遇到的问题,并鼓励学生以小组为单位展示探究成果。
学生展开合作性的探讨,并陈述自己的研究成果。
通过合作探究和自我的展示,鼓励学生合作学习的品质
当堂训练(18分钟)
1、求下列圆的圆心坐标和半径
C1:x2+y2=5
C2:(x-3)2+y2=4
C3:x2+(y+1)2=a2(a≠0)
2、以C(4,-6)为圆心,半径等于3的圆的标准方程
3、设圆(x-a)2+(y-b)2=r2
则坐标原点的位置是()
A.在圆外B.在圆上
C.在圆内D.与a的取值有关
4、写出下列各圆的标准方程(1)圆心在原点,半径等于5
(2)经过点P(5,1),圆心在点C(6,-2);
(3)以A(2,5),B(0,-1)为直径的圆。
5、下列方程分别表示什么图形
(1)x2+y2=0
(2)(x-1)2=8-(y+2)2
(3)《圆的标准方程》教学设计-贾伟
6、巩固提升:已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心在直线l:x-y+1=0上,求圆C的标准方程并作图
指导学生就不同条件下给出的圆心和半径关系,求解圆的标准方程这两个要素展开训练。
学生自主开展训练,并纠正学习中所遇到的问题
巩固所学知识,并查缺补漏。
回顾小结
(1分钟)
1、你学到了哪些知识?
2、你掌握了哪些技能?
3、你体会到了哪些数学思想?
采用提问的形式帮助学生回顾和分析本节所学。
学生思考并从知识、技能和思想方法上回顾总结。
培养学生归纳总结能力
作业布置
(1分钟)
课本87页习题2-2
A组的第1道题
布置训练任务
标记并完成相应的任务
检测学生掌握知识情况。
本节教学主要遵循“回-导-学-展-讲-练-结”的高效课堂教学模式,遵循学生学习的主体地位,鼓励学生自主思考和探讨。
教学中要积极鼓励学生多思考总结,在判断点与圆的位置关系中,要遵从学生个性化的(☆)发展思路,鼓励学生创造性的解决问题。
高中数学优秀教学设计 篇6
【教学目的】
(1)使学生初步理解集合的概念,知道常用数集的概念及记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
【重点难点】
教学重点:集合的基本概念及表示方法
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
【内容分析】
1、集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子
这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念
集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明
【教学过程】
一、复习引入:
1、简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
2、教材中的章头引言;
3、集合论的创始人——康托尔(德国数学家)(见附录);
4、“物以类聚”,“人以群分”;
5、教材中例子(P4)
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念:
由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合的元素。
定义:一般地,某些指定的对象集在一起就成为一个集合。
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合 记作N,
(2)正整数集:非负整数集内排除0的集 记作N*或N+
(3)整数集:全体整数的集合 记作Z ,
(4)有理数集:全体有理数的集合 记作Q ,
(5)实数集:全体实数的集合 记作R
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0
(2)非负整数集内排除0的集 记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*
3、元素对于集合的隶属关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q…… 元素通常用小写的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的开口方向,不能把a∈A颠倒过来写
三、练习题:
1、教材P5练习1、2
2、下列各组对象能确定一个集合吗?
(1)所有很大的实数 (不确定)
(2)好心的人 (不确定)
(3)1,2,2,3,4,5.(有重复)
3、设a,b是非零实数,那么 可能取的值组成集合的元素是 -2,0,2
4、由实数x,-x,|x|, 所组成的集合,最多含( A )
(A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素
5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:
(1) 当x∈N时, x∈G;
(2) 若x∈G,y∈G,则x+y∈G,而 不一定属于集合G
证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0, 则x= x+0* = a+b ∈G,即x∈G
证明(2):∵x∈G,y∈G,
∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)
∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵a∈Z, b∈Z,c∈Z, d∈Z
∴(a+c) ∈Z, (b+d) ∈Z
∴x+y =(a+c)+(b+d) ∈G,
又∵ =且 不一定都是整数,
∴ = 不一定属于集合G
【小结】
1、集合的有关概念:(集合、元素、属于、不属于)
2、集合元素的性质:确定性,互异性,无序性
3、常用数集的定义及记法
高中数学教学设计范例 篇7
一、目标
1、知识与技能
(1)理解流程图的顺序结构和选择结构。
(2)能用字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图
2、过程与方法
学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。
3、情感、态度与价值观
学生通过动手作图,用自然语言表示算法,用图表示算法。进一步体会算法的基本思想——程序化思想,在归纳概括中培养学生的逻辑思维能力。
二、重点、难点
重点:算法的顺序结构与选择结构。
难点:用含有选择结构的流程图表示算法。
三、学法与教学用具
学法:学生通过动手作图,用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。
教学用具:尺规作图工具,多媒体。
四、教学思路
(一)、问题引入 揭示题
例1 尺规作图,确定线段的一个5等分点。
要求:同桌一人作图,一人写算法,并请学生说出答案。
提问:用字语言写出算法有何感受?
引导学生体验到:显得冗长,不方便、不简洁。
教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。
本节要学习的是顺序结构与选择结构。
右图即是同流程图表示的算法。
(二)、观察类比 理解题
1、 投影介绍流程图的符号、名称及功能说明。
符号 符号名称 功能说明
终端框 算法开始与结束
处理框 算法的各种处理操作
判断框 算法的各种转移
输入输出框 输入输出操作
指向线 指向另一操作
2、讲授顺序结构及选择结构的概念及流程图
(1)顺序结构
依照步骤依次执行的一个算法
流程图:
(2)选择结构
对条进行判断决定后面的步骤的结构
流程图:
3、用自然语言表示算法与用流程图表示算法的比较
(1)半径为r的圆的面积公式 当r=10时写出计算圆的面积的算法,并画出流程图。
解:
算法(自然语言)
①把10赋与r
②用公式 求s
③输出s
流程图
(2) 已知函数 对于每输入一个X值都得到相应的函数值,写出算法并画流程图。
算法:(语言表示)
① 输入X值
②判断X的范围,若 ,用函数Y=x+1求函数值;否则用Y=2-x求函数值
③输出Y的值
流程图
小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。
学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)
(三)模仿操作 经历题
1、用流程图表示确定线段A.B的一个16等分点
2、分析讲解例2;
分析:
思考:有多少个选择结构?相应的流程图应如何表示?
流程图:
(四)归纳小结 巩固题
1、顺序结构和选择结构的模式是怎样的?
2、怎样用流程图表示算法。
(五)练习P99 2
(六)作业P99 1
高中数学单元教学设计 篇8
一、目标
1.知识与技能
(1)理解流程图的顺序结构和选择结构。
(2)能用字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图
2.过程与方法
学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。
3情感、态度与价值观
学生通过动手作图,.用自然语言表示算法,用图表示算法。进一步体会算法的基本思想——程序化思想,在归纳概括中培养学生的逻辑思维能力。
二、重点、难点
重点:算法的顺序结构与选择结构。
难点:用含有选择结构的流程图表示算法。
三、学法与教学用具
学法:学生通过动手作图,.用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。
教学用具:尺规作图工具,多媒体。
四、教学思路
(一)、问题引入 揭示题
例1 尺规作图,确定线段的一个5等分点。
要求:同桌一人作图,一人写算法,并请学生说出答案。
提问:用字语言写出算法有何感受?
引导学生体验到:显得冗长,不方便、不简洁。
教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。
本节要学习的是顺序结构与选择结构。
右图即是同流程图表示的算法。
(二)、观察类比 理解题
1、 投影介绍流程图的符号、名称及功能说明。
符号 符号名称 功能说明
终端框 算法开始与结束
处理框 算法的各种处理操作
判断框 算法的各种转移
输入输出框 输入输出操作
指向线 指向另一操作
2、讲授顺序结构及选择结构的概念及流程图
(1)顺序结构
依照步骤依次执行的一个算法
流程图:
(2)选择结构
对条进行判断决定后面的步骤的结构
流程图:
3.用自然语言表示算法与用流程图表示算法的比较
(1)半径为r的圆的面积公式 当r=10时写出计算圆的面积的算法,并画出流程图。
解:
算法(自然语言)
①把10赋与r
②用公式 求s
③输出s
流程图
(2) 已知函数 对于每输入一个X值都得到相应的函数值,写出算法并画流程图。
算法:(语言表示)
① 输入X值
②判断X的范围,若 ,用函数Y=x+1求函数值;否则用Y=2-x求函数值
③输出Y的值
流程图
小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。
学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)
(三)模仿操作 经历题
1.用流程图表示确定线段A.B的一个16等分点
2.分析讲解例2;
分析:
思考:有多少个选择结构?相应的流程图应如何表示?
流程图:
(四)归纳小结 巩固题
1.顺序结构和选择结构的模式是怎样的?
2.怎样用流程图表示算法。
(五)练习P99 2
(六)作业P99 1
高中数学优秀教学设计 篇9
重点难点教学:
1、正确理解映射的概念;
2、函数相等的两个条件;
3、求函数的定义域和值域。
教学过程:
1、使学生熟练掌握函数的概念和映射的定义;
2、使学生能够根据已知条件求出函数的定义域和值域; 3.使学生掌握函数的三种表示方法。
教学内容:
1、函数的定义
设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:,yf A其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{|}f A?叫值域(range)。显然,值域是集合B的子集。
注意:
① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
2、构成函数的三要素定义域、对应关系和值域。
3、映射的定义
设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。
4、区间及写法:
设a、b是两个实数,且a
(1)满足不等式axb?的实数x的集合叫做闭区间,表示为[a,b];
(2)满足不等式axb?的实数x的集合叫做开区间,表示为(a,b);
5、函数的三种表示方法
①解析法
②列表法
③图像法