首页 > 教学教案 > 教案大全 > 教学设计 > 最新找次品优质课一等奖教学设计优秀12篇正文

《最新找次品优质课一等奖教学设计优秀12篇》

时间:

在教学工作者开展教学活动前,就难以避免地要准备教案,教案是教学活动的依据,有着重要的地位。那么写教案需要注意哪些问题呢?

找次品优质课一等奖教学设计 篇1

教学内容:找次品。

教学目标:

1、通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

2、感受到数学思想在日常生活中的广泛应用,尝试用数学的方法解决实际生活中的简单问题,培养学生应用数学的`意识和解决问题的能力。

教学过程:

一、创设情境,导入新课

1、同学们生活中生活中是不是也曾买过次品呢?那么,在众多商品中如何找出次品呢?在小丽买的3中商品中都有次品,看来现在的商品质量还真成问题。这节课我们想办法帮小丽“找次品”(板书课题)

2、画天平示意图,提问:这是什么?你知道天平的作用吗?怎样使用你知道吗?(为了讲课方便,教师用双手做天平使用演示)

3、有了它,我们就可以找出生活中的次品了

二、研讨新知

1、出示第一种商品:5瓶钙片,其中1瓶少了3片。怎样才能找出是哪一瓶?(生的回答可能有:用手掂一掂,打开后数一数个数,用天平称一称)

2、教师与学生讨论并否定前两种的不科学以及不卫生性,引导学生采用用天平称的方法。

(1)学生动手用学具摆一摆,老师随机指导

(2)小组内交流一下方法。

(3)全班汇报,在汇报中师生合作,演示同学们的测量方法。(演示中重点强调有几种可能,说明了什么)

(4)对几种方法的梳理,比较:分成几份?每份数量是多少?至少需要称几次就一定能找出来?

3、解决9个螺丝和12盒巧克力的问题,从对比中总结出最优方法。

(1)分组解决1、2小组解决9个螺丝中一个次品的问题。3、4小组解决12盒巧克力中一盒次品的问题。

(2)动手操作并填表。

找次品优质课一等奖教学设计 篇2

教学目标:

1.让学生初步认识“找次品”这类问题的基本解决手段和方法。

2.学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

3.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

教学重点:让学生初步认识“找次品”这类问题的基本解决手段和方法。体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

教学难点:观察归纳“找次品”这类问题的最优策略。

教学过程:

一、谈话引入昨天晚上老师买来三瓶糖,谁知有一瓶给我儿子偷吃了两颗。像这样的商品比标准的商品轻了些,我们就把这商品叫“次品”,这节课我们就作为小小质检员,一起想办法找出这些次品,好不好?(板书课题:找次品)

二、初步探究(教学例1)

1、自主探索。

(1)刚才老师手上的三瓶糖,其中有一瓶是次品,有什么办法帮忙将它找出来吗?

生:用天平称来称。

师:对,我们可以用天平称来帮忙找出次品。

师:用天平称来称,至少要称多少次保证可以找出次品?

(2)请同学上台演示操作过程。

根据学生回答板书:3(1,1,1)1次

小结:从三瓶里找出一瓶次品,至少要称多少次?(1次)

2、设置悬念,激发欲望。

如果不是三瓶,而是2187瓶,至少要称多少次才能保证找出来呢?

(1)请同学们猜一猜,大胆说出猜想结果。

(2)小结:看来大家的答案并不统一,接下来我们要好好研究这个问题,但是2187瓶数量太大了,我们先从简单的数量研究开始。先研究5瓶吧。

3、组织探究

出示例1,老师又拿来了两盒口香糖,一共是5瓶,你还能用天平称将那盒次品找出来吗?至少要称多少次?

1、小组讨论:

①你把待测物品分成几份?每份是多少?

②假如天平平衡,次品在哪里?

③假如天平不平衡,次品又在哪里?

④至少称几次就一定能找出次品来?

小组里互相讨论,小声说一说。

2、学生一边演示,一边讲解操作过程。

师据生回答板书:5(2,2,1)2次

5(1,1,1,1,1)2次

师:为什么不把5瓶分成2份,一份是2瓶,一份是3瓶呢?

小结:用天平找次品时,操作过程,天平两边放的数量要相等,否则称了也是白称。

三、拓展提高,优化方案(教学例2)

谈话:5瓶研究过了,但是离我们的2187瓶还相差很远,接下来我们研究9瓶怎么样?

1、明确题目要求。

出示例2,有9口香糖,其中有一个是次品(次品轻一些),用天平称,至少称几次就一定能找出次品来?

让生自己明确问题,并找出重点、关键的词语,并指出重点词语:次品轻、至少、一定保证。

2、组织讨论。

①你把待测物品分成几份?每份是多少?

②假如天平平衡,次品在哪里?

③假如天平不平衡,次品又在哪里?

然后让生说说方法,师据生回答完成表格:

口香糖个数

分成的份数

保证能找出次品的次数

3、观察分析,寻找规律。

师:“为什么有些同学的次数是4次,有同学是2次,他的方法高明之处是什么?”

师:“请同学们观察表格,你发现了什么”

师“那这种方法我们分成几份?是怎么分的?”

然后再让学生小组讨论:1、找次品的最好方法是怎样?

2、把待测物品分成几份?

据生回答出示:最好方是把待测物品平均分成三份。(板书)

4、验证刚得到的策略:

如果零件是12个,�

师:要多少次呢?

生:7次。

师:原来7次就保证找到了次品。

六、小结

师全课小结:这节课我们主要是学了如何找次品,那找次品的最好方法是什么?

找次品优质课一等奖教学设计 篇3

《找次品》教学设计参考

教学目标

1.通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

2.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

3.学会用数学的知识来研究生活中的饿实际问题。

教学重难点

1.尝试用数学方法解决实际生活中的简单实际问题。

2.尝试用数学方法解决实际生活中的简单实际问题。

一、创境激趣

1、昨天我们学习了如何找次品的方法,谁能说一说。

2、今天我们继续探讨如何去快速地找出次品的一般方法。

二、自主探究

1、解决9 个零件的问题,归纳出找次品的最优方法。

(1)出示问题:有9 个零件,其中有一个是次品(次品重一些),你能用天平把它找出来吗?

老师引导分析方法:你可以拿学具摆一摆,也可以用笔在纸上进行分析,看看至少需要几次就一定能找出次品?

(2)自主探索。在有一定结果以后请一个学生上台展示方法,老师帮助梳理方法:分成几份?每份各是多少?至少需要几次就一定能找出次品?

(3)反思自己的分法并在小组内交流。老师指导交流重点:看看我们的。分法有什么不同?分成了几份?每份是多少?至少需要几次就能保证伐出次品?

(4)全班汇报。老师引导学生阐述:分成几份?怎么分?怎样找出次品?至少需要称几次就一定能找出次品?边汇报边板书示意图。

(5)老师先引导学生观察、梳理一遍,然后进行比较:哪种分法能保证用最少的次数称出次品?这种分法有什么特点?

(6)小结:把9个零件分成3 部分,并且平均分,能够保证找出次品而且称的次数最少。

2、推测多个零件找次品的解决办法。

(l)提出猜测:那么,是否在所有的找次品问题中,这样平均分成3 份的方法都能保证找出次品而且所需次数一定最少呢?我们来猜一猜。

(2)学生猜想

(3)要验证猜想我们再来试一下。如果有12 个零件,其中一个是次品,按刚才我们的猜想,应该怎么分,称的次数就最少而且一切能找出次品?(平均分成3 份,即4 , 4 , 4)迅速在草稿纸上分析一下,看看至少需要几次就一定能找出次品?

学生汇报:3 次。

(4)我们再来看看别的分法能不能让称的次数更少。还有哪些分法?(2,2,8)(3,3,6)(5,5,2)(6,6)学生选择一种分法在纸上进行分析。

(5)全班汇报,引导学生比较:有没有哪种分法能让称的次数更少而且保证找出次品?

(6)小结:这样看来利用天平找次品的时候,把待测物品分成3 份,并且平均分的方法能保证找出次品而且称的次数一定最少。

三、交互反馈

p137第5题

(1)学生独立完成,集体交流。

(2)让学生脱离具体的操作活动,学会用图来分析和解决数学问题,从而培养学生的抽象思维能力。本题答案是至少需要称3 次。

四、开放延伸

p137第6题

(1)学生小组讨论

(2)汇报交流:与例题不同,是另一种类型的找次品,因为不知道次品比正品重还是轻,所以问题就复杂多了。对本题而言,还是分成3 份,至多称2 次就一定能找出次品。第一次天平两边各放一袋白糖,若天平平衡则剩下的那袋就是次品,再称一次就能判断次品是轻还是重了;若天平不平衡,则这两袋中一定有一袋是次品,可取下轻(或重)的那袋,把剩下的那袋放上天平,若天平平衡,则轻(重)的是次品,若天平不平衡,则重(轻)的是次品。对学有余力的学生,可以此题为起点,探索数量为4 , 5时如何找出次品。

五、课堂总结

本节课我们研究了什么问题?

六、作业:

a级:1、p136第4题

b级:p137你知道吗?

找次品优质课一等奖教学设计 篇4

教学内容:

《义务教育课程标准实验教科书数学五年级下册》第134~135页。

教学目标:

1.能够借助纸笔对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样到优化的思维过程。

2.以“找次品”为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。

3.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

教学重点:

经历观察、猜测、试验、推理的思维过程,归纳出解决问题的最优策略。

教学难点:

脱离实物,借助纸笔帮助分析“找次品”的问题。

教、学具准备:

教师用具:3瓶口香糖、课件学生用具:10张圆形纸片

教学过程:

一、初步认识“找次品”的基本原理

1.创设情景,自主探索。

(1)师:出示3瓶口香糖,提出问题:现在这里有3瓶口香糖,其中有一瓶少了3片,我们就把那一瓶称为次品,(板书:次品)你能用什么办法很快地找到哪一瓶是次品?

生1:数一数里面有多少粒,哪一瓶比另外两瓶少了3粒,就把那瓶找出来了。

师:你是用数的方法来找的。生2:还可以用天平来称。

师:用天平称。好!天平大家见过吗?生:见过。

师:天平上面有两个托盘。如果两个托盘里的东西一样重,天平就会怎么样?

生:平衡。

师:如果不一样重呢?生:天平会一边高,一边低。

师:低的那边物品比较,高的那边物品比较。

2.引导学生探索用天平找次品的方法。

师:大家想一想:有3瓶口香糖,其中有一瓶是次品,利用天平来称,至少称几次一定能找到次品?

生答并演示称法。

3.揭示课题。

好!在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个重量不同的,利用天平把它找出来,我们把这类问题叫做找次品。(板书课题:找次品)

二、初步认识“找次品”的基本解决手段和方法

1.设疑:

师:刚才3瓶中有一瓶是次品,利用天平来称,至少几次就一定能找出次品?

生:1次。

师:如果不是3瓶,而是2187瓶,你估计要多少次?点2名学生回答。

师:2187瓶到底需要称多少次?今天我们就来解决这个问题。2187这个数怎么样?

生:很大。

师:我们碰到数据很大的时候,可以用一个策略。可以把这个很大的数变得很小,我们从很小的数开始研究,逐渐寻找规律。这种策略叫做化繁为简。(板书:化繁为简)

那么我们就从很小的数开始研究。刚才3瓶已经研究过了,那再研究大一点的数?

(5)师:我们就来研究5瓶,5瓶中有一瓶是次品,用天平秤来称,至少几次可以保证找到次品?

2.课件出示问题,引导学生利用学具自主探索:拿出5个圆片代替5瓶口香糖,思考一下,怎样找出次品?

3.独立思考,有一定思维结果的时候组织小组交流。指导学生在交流中比较方法。

4.全班汇报。

师:你是怎么称的?天平左右两边怎么放?

生1:(1,1,3)→(1,1,1)2次

生2:(2,2,1)→(1,1)2次

师:不管这样分组,还是这样分组,都是几次保证找到?(2次)

5.教师小结:利用天平找次品,除了可以利用学具,还可以画出这样的示意图来帮助我们思考。

三、解决9件物品中有一件是次品的问题,归纳出找次品的最优方法。

5个离2187还差很多,规律还没找出来,怎么办?再增加几个?板书:91、课件出示问题:9瓶中有一瓶是次品,用天平秤来称,至少几次可以保证找到次品?教师引导分析方法:你可以用圆片摆一摆,也可以像老师这样做记录,看看至少需要几次就一定能找出次品。

2.自主探索。

3、学生汇报称法:

生1:(1,1,1,1,1,1,1,1,1)4次

生2::(4,4,1)→(2,2)→(1,1)3次

生3::(2,2,5)→(2,2,1)→(1,1)

生4::(3,3,3)→(1,1,1)2次

4、教师先引导学生观察、梳理一遍,然后进行比较:哪种分法能保证用最少的次数称出次品?这种分法有什么特点?

提示:这种方法一开始就怎么分的?分成了几份?

5、小结:把9瓶口香糖分成3部分,并且平均分,能够保证找出次品而且称的次数最少。板书:平均分成3部分

四、推测多件物品中找次品的解决办法

1、提出猜测:那么,是否在所有的找次品问题中,这样平均分成3份的方法能保证找出次品而且所需次数一定最少呢?

2、要验证我们的猜想对不对,怎么验证?我们再增加几个来试一下。如果有12瓶,(板书:12)其中有一瓶是次品,按刚才我们的猜想应该怎么分称的次数就最少而且一定能找出次品?(生:平均分成3份,即4,4,4)。迅速在草稿纸上分析一下,看看至少需要几次就一定能找出次品?

生:(4,4,4)→(2,2)→(1,1)3次

我们再来看看别的分法能不能比3次更少。还有哪些分法?

生:(228)(336)(552)(66)请同学们选择一种分法在纸上进行分析。

全班汇报,引导学生比较:有没有哪种分法能让称的次数更少而且保证找出次品?

3、与学生一起小结:这样看来在利用天平找次品的时候,把待测物品分成3份,并且平均分的方法能保证找出次品而且称的次数一定最少,这说明我们刚才的猜想是对的。

五、拓展训练1、9瓶需要2次,如果是27瓶中有一个次品,至少称几次保证能找到次品?

2、如果81瓶呢?243瓶呢?729瓶呢?2187瓶?

3、小结:开始我们猜测是2000多次,经过探究我们发现:用数学的眼光去看只要7次,相差如此之大,这就是数学的魅力。

4、思考:刚才我们研究的9、12、27和81等都是3的倍数,如果不是3的倍数,又该怎么办呢?大家课后想一想,我们下节课来研究这个问题。

六、课堂总结:

今天我们学的是找次品的第一课时,当物品数是3的倍数时,利用天平找次品,怎样分组需要称的次数最少?

板书设计:

教后反思:

最近根据学校教导处的安排,我上了这节“找次品”的公开课,上完课后感慨颇多,对有效的课堂教学有了更深的认识。

一、体现“由易到难”的思想。

教材首先出示例1通过利用天平找出5件物品中的1件次品,让学生初步认识找次品的基本方法。我认为在学生初次接触“找次品”问题时,对从5件物品中找出1件次品,难度偏大,学生学习起来有困难。于是我在课本例1的前面,增加了“从3个物品中找1个次品”的内容,这样学生学习起来就较易掌握,当学生理解了从3个物品中找1个次品的最优方法,然后再来探究5个、9个的情况。这样降低学生的思维难度,体现了由易到难的思想。而且从3个物品中找1个次品的最优方法,是均分3份思想的基本模型,把这种情况加以研究确实有必要。另外,考虑到“找次品”的问题比较复杂,一节课的时间有限,将教学内容限定在称量物品的个数是3的倍数的情况展开探究,为下节课探究不是3的倍数的情况作好铺垫。

二、渗透“化繁为简”的思想。

我在教学中体现了化繁为简的数学思想:把复杂的问题简单化,再从解决简单的问题中发现规律,用这个规律解决复杂的问题。在本节课的开始就设计了让学生猜“2187瓶中有一瓶是次品,用天平称,至少要称几次一定能找出次品”,学生猜无论如何都要一千多次,要解决这个难题,我们首先研究3瓶、5瓶、9瓶等逐渐寻找规律和方法,最后找到“均分3份来称所需的次数最少”的方法,然后用找到的方法来解决从2187瓶中找次品的问题。后来经过探究后发现从2187瓶中找一瓶次品只要称7次即可,在这种强烈的对比之中学生感受到数学思想方法的魅力,数学的奇妙!从而激发了学生数学的欲望。

三、体验“猜想验证”的数学思想方法。

猜想验证是一种重要的数学思想方法,正如荷兰数学教育家弗赖登塔尔所说“真正的数学家——常常凭借数学的直觉思维做出各种猜想,然后加以证实。”因此,小学数学教学中教师要重视猜想验证思想方法的渗透,以增强学生主动探索、获取数学知识的能力,促进学生创新能力的发展。

本节课就让学生经历了“实验探究——猜想——验证——归纳”的过程。首先从9瓶中找1瓶次品的几种方法的对比中,我们发现均分3份的方法所需的次数最少,是否无论是多少瓶都是均分3份的方法所需的次数最少呢?为了验证这一猜想,就必须再用一个例子去试验,然后归纳得出结论。学生通过经历知识的形成过程,不仅获得了数学结论,更重要的是逐步学会了获得数学结论的思想方法——猜想验证,提高了主动探索、获取知识的能力,增强了学好数学的信心。

【找次品优秀教学设计(通用6篇)】

找次品优质课一等奖教学设计 篇5

《找次品》教学设计 教学内容:人教版五年级数学第七单元数学广角第一课时《找次品》

教学目标:

1.通过观察、猜测、实验、推理等活动,体会解决这类问题策略的多样性及运用优化的方法解决问题的有效性。

2.让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。3.培养学生的合作意识和探究兴趣。教学重点:经历观察、猜测、实验、推理的思维过程,归纳出解决问题的最优策略。教学难点:观察归纳“找次品”这类问题的最优策略。教学准备:课件、简易天平、5瓶木糖醇、每生5个小正方体、实验记录表格。

教学过程: 一、创设情景,初步感知:(一)、出示问题情境一(用实物演示)有3瓶一样的木糖醇,其中1瓶少了3颗,请你想办法把它找出来。1、学生独立思考。2、全班交流。(用课件展示天平模型)教师边演示边叙述。结论:两瓶可以一次找出次品 3、3瓶的时候怎么找出来呢? 在天平的左右两边各放1瓶,如果不平衡,说明次品就在翘起来的那边,如果平衡,说明次品就是另外一瓶。结论:三瓶也可以一次找出次品(二)、出示问题情境二 1、如果在5瓶中呢?利用天平看谁最快把次品找出来。

(1)现在我这里有5瓶口香糖,其中1瓶少了3片,你能想办法找把它找出来吗?

(2)学生小组合作

师提示:大家可以拿出小正方体,用手摸拟天平摆摆看

(3)生汇报,师板书:

5(2,2,1)-2(1,1);2次     5(1,1,1,1,1)1次

(4)师质疑:称1次能找到吗?一定能找到吗?称2次呢?

(5)师小结:从5瓶口香糖中找次品,用天平只需要称2次就一定能找到。

(板书:5瓶称2次)二、深入探究,寻找规律: 在9瓶木糖醇中,有一瓶是次品,(次品轻一些)用天平称,称几次就保证能找出次品来? 1、小组合作,讨论,交流,并完成以下表格:

木糖醇的总数

分成的份数

每份的数量

保证能找出次品

需要称的次数 9 3 4、4、1

3 3、3、3

5 2、2、2、2、1

9 1、1、1、1、1、1、1、1、1 4 2、全班交流,统一认识,优化方法。结论:九瓶也只要两次可以保证找出次品 最优策略: 1、把待测物品分成三份。2、尽量平均分,不能均分的,也应该使多的一份与少的一份只相差1。三、智慧冲浪,提升思维。

1、练习二十六第2题 师:有 15 盒饼干,其中的 14 盒质量相同,另有 1 盒少了几块,如果能用天平称,至少几次保证可以找出这盒饼干?

2、书本做一做

(1)师:有 10 瓶水,其中 9 瓶质量相同,另有 1 瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?

(2)如果是11瓶呢?又需要称多少次才能保证找到次品呢?

师小结:两种方法都很有道理,如果是我会选第一种,因为它更接近平均分成3份。这个方法到底是不是一定成立呢?大家不妨课后再举更大的数据来试试验证。

四、师小结:今天我们学了什么? 五、作业:书本练习二十六第1—3题 附板书设计:                   平均分       分成3份                        所称次数最少                    尽量平均分

找次品优质课一等奖教学设计 篇6

教学目标:

1.通过观察、猜测、实验、推理等活动,体会解决这类问题策略的多样性及运用优化的方法解决问题的有效性。

2.让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。3.培养学生的合作意识和探究兴趣。教学重点:经历观察、猜测、实验、推理的思维过程,归纳出解决问题的最优策略。教学难点:观察归纳“找次品”这类问题的最优策略。教学准备:课件、简易天平、5瓶木糖醇、每生5个小正方体、实验记录表格。

教学过程:

一、创设情景,初步感知:

(一)、出示问题情境一(用实物演示)有3瓶一样的木糖醇,其中1瓶少了3颗,请你想办法把它找出来。1、学生独立思考。2、全班交流。(用课件展示天平模型)教师边演示边叙述。结论:两瓶可以一次找出次品3、3瓶的时候怎么找出来呢?在天平的左右两边各放1瓶,如果不平衡,说明次品就在翘起来的那边,如果平衡,说明次品就是另外一瓶。结论:三瓶也可以一次找出次品

(二)、出示问题情境二1、如果在5瓶中呢?利用天平看谁最快把次品找出来。

(1)现在我这里有5瓶口香糖,其中1瓶少了3片,你能想办法找把它找出来吗?

(2)学生小组合作

师提示:大家可以拿出小正方体,用手摸拟天平摆摆看

(3)生汇报,师板书:5(2,2,1)-2(1,1);2次5(1,1,1,1,1)1次

(4)师质疑:称1次能找到吗?一定能找到吗?称2次呢?

(5)师小结:从5瓶口香糖中找次品,用天平只需要称2次就一定能找到。

(板书:5瓶称2次)

二、深入探究,寻找规律:

在9瓶木糖醇中,有一瓶是次品,(次品轻一些)用天平称,称几次就保证能找出次品来?

1、小组合作,讨论,交流,并完成以下表格:

木糖醇的总数

分成的份数

每份的数量

保证能找出次品

需要称的次数9 3 4、4、19 3 3、3、39 5 2、2、2、2、19 9 1、1、1、1、1、1、1、1、1 4 2、全班交流,统一认识,优化方法。结论:九瓶也只要两次可以保证找出次品最优策略:1、把待测物品分成三份。2、尽量平均分,不能均分的,也应该使多的一份与少的一份只相差1。

三、智慧冲浪,提升思维。

1、练习二十六第2题师:有15盒饼干,其中的14盒质量相同,另有1盒少了几块,如果能用天平称,至少几次保证可以找出这盒饼干?

2、书本做一做

(1)师:有10瓶水,其中9瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?

(2)如果是11瓶呢?又需要称多少次才能保证找到次品呢?

师小结:两种方法都很有道理,如果是我会选第一种,因为它更接近平均分成3份。这个方法到底是不是一定成立呢?大家不妨课后再举更大的数据来试试验证。

四、师小结:

今天我们学了什么?五、作业:书本练习二十六第1―3题附板书设计:平均分分成3份所称次数最少尽量平均分

找次品优质课一等奖教学设计 篇7

一、教学目标:

1.让学生初步认识“找次品”这类问题的基本解决手段和方法。

2.学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

3.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

二、教学重难点:

1.让学生初步认识“找次品”这类问题的基本解决手段和方法。体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

2.观察归纳“找次品”这类问题的最优策略。

三、教学准备:

课件、圆片(三角形)

四、教学过程:

(一)游戏导入,引出新课

师:上课之前,老师想和大家做一个游戏,考考大家的眼力,你们愿

意吗?

生:愿意。

师:(课件出示图片)请找出下面两幅图的不同。

学生汇报

生1:第一幅图c处不同。

生2:第二幅图c处不同。

师:同学们可真厉害!这么快就找到了两幅图中的不同之处。现在有

两瓶口香糖(课件出示),可是有一瓶被一名调皮的学生吃了两颗,这两瓶口香糖的外观都一样,你能帮帮老师怎样找出那瓶少了两颗的口香糖吗?

学生讨论,汇报

生:可以用天平称一称,少了两颗口香糖的那瓶应该略轻一些,把这

两瓶口香糖分别放在天平的左右两边,天平向上的一面就是少了两颗口香糖的那瓶。

师:你说的很好!在生活中常常有这样的情况,在一些看似完全相同的。物品中混着一个质量不同(轻一些或是重一些)的物品,需要用天平把它找出来,像这一类问题我们把它叫做找次品。这节课我们就来研究《找次品》(板书课题)

(二)探究新知

1.从三瓶中找到次品

师:刚才同学们很快的从两瓶中找到了次品,如果老师这儿有三盒口

盒糖,其中有一盒是少了两粒的,你有什么办法帮忙将它找出来吗?

生:用天平找。

师:不错,依然用天平来帮助我们找到次品。提示:(1)你把待测物

品分成几份?每份是多少?(2)假如天平平衡,次品在哪里?

(3)假如天平不平衡,次品又在哪里?

生:可以把待测物品分成3份,每份有1个。假如天平平衡,剩下的就是次品,如果天平不平衡,天平上升的一侧是次品。

根据学生的汇报教师课件演示。

2.从五瓶中找到次品

师:同学们太厉害了。老师又拿来了两盒口香糖,和前面的三盒混在一起,你还能用天平将那盒吃了两粒的口香糖找出来吗?(课件出示)

同桌合作完成,汇报

生1:可以把这5瓶口香糖分成5份,每份是1瓶,分别标上1~5号,先拿出1号和2号称,如果天平不平衡,轻的一侧就是次品;如果天平平衡,称3号和4号,同样,如果天平不平衡,轻的一侧是次品;如果天平平衡,那么5号是次品。

师:你说的很完整。如果按照你这样称,至少需要称几次?生1:至少需要称2次。

师:还有没有不同的方法?

生2:我们把这5瓶口香糖分成3份,有两份中有两瓶,一份中有一

瓶。现在天平的左边和右边分别放上2瓶口香糖,如果天平平衡,则剩下的那瓶就是次品;如果天平不平衡,看哪一面轻,把轻的这侧的两瓶口香糖再分别放入天平的两侧,轻的一侧就是次品。至少需要称2次。

3.探究从多种方法中“找次品”的最佳方案。

师:这两个同学的方法都很好,都能在几盒口香糖里找出轻的那盒

次品来,那如果有的次品是比是重一些的,那你又能不能把它找

出来呢?请同学们一小组为单位探讨,(课件出示例2)有9个零件,其中有一个是次品(次品重一些),用天平称,至少称几次就一定能找出次品来?

让生自己审题,并找出重点、关键的词语,课件用点标出重点词语:次品重、至少、一定。

根据学生的回答,课件演示

师:在9个物体中,我们要找到次品就有4种方法,如果待测物体更

多,方法也就越多。我们每一次都这么找会很麻烦,有没有什么规律呢?请同学们观察屏幕中的表格,看一看哪种方法我们称的最快?

生:第三种方法最快,只称了两次就找到了次品。

师:这种方法我们是分成了几份?怎么分的?

生:平均分成了3份。

师:是否所有的次品都可以平均分成3份吗?如果不是怎么办?生:不能平均分成3份的时候,要分得尽量平均。

师:很好,就像前面我们从5个产品中找次品一样,可以把它分成三

份,并且要尽量分得平均。

(三)巩固练习

1.如果零件是10个,�

(四)总结

师:这节课我们主要是学了如何找次品,那找次品的最好方法是什

么?(课件出示)“同学们这节课上得不错,其实在日常生活中,我们经常会遇到这样的问题,希望同学们多观察、多思考,从而发现更多知识。”

找次品优质课一等奖教学设计 篇8

教学目标:

1、让学生通过找次品的操作活动和分析、归纳的理性思考,发现解决这类问题的最佳策略-把待测物品平均分3组。

2、以“找次品”活动为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的'多样性及运用优化的方法解决问题的有效性。

3、让学生体会用缩小范围逐步逼近的方法来解决问题的数学思想,培养学生思考问题的严密性和口头语言表达的逻辑性。

教学重点:发现解决这类问题的最佳策略。

教学难点:理解并认可最佳策略的有效性。

教学准备:课件

学具准备:12个小圆片

一、确定研究方法――用天平称。

师:你们知道伦敦奥运会的开幕时间吗?2012伦敦奥运会就要到了,为了使每个运动员都能打好每场比赛,工厂里对每个体育器材都要进行严格的检查,绝对不能出现次品,否则就会影响运动员的成绩,这不有个工人不小心,把一个次品球与2个好球混到了一起,你们愿意帮帮他找出那一个次品球吗?(出示课件)你们有哪些方法呢?

生1:用手掂一掂,轻的就是次品。

生2:用天平称。

师:刚才有同学说使用天平,大家见过天平吗?

(课件出示天平图片)

师:天平有两个托盘,如果两个托盘里的物品质量相等,天平就(请用手势表示)保持平衡,如果不相等,轻的一端就会怎么样(上扬),重的一端就会怎么样(下沉)。

师:如果使用天平来找出这3个球中的一个次品球,你打算怎么样称?

生:天平两端各放1个,(是任意拿的吗)如果天平两端平衡,那天平外的那个就是次品;如果天平两端不平衡,那次品就在上扬的一端。

学生在说的时候出示相应的课件。师:能这样称吗?学生齐读。

③师和学生一起小结:刚才在称的过程中,天平出现了几种情况?(2种),一种是两边相等的情况,也就是―――天平平衡(板书:平衡),第二种情况时天平一边高,一边低,也就是不平衡。(板书:不平衡)

这3 个球不管天平平衡不平衡,称一次,就保证能找到次品。(保证找到)在生活中常常有这样一些情况,在一些看起来完全相同的物品中混着一个质量不同的,轻一点或者是重一点,我们习惯把这类物品称之为“次品”。

④今天这节课我们就一起研究像这样用天平称来找次品的方法。(板书课题:找次品)

二、初步认识“找次品”的基本解决方法。(体会找次品要求中的“保证、至少”和“全面的考虑问题”的数学思想方法)

师:3个太少了,是吧,你看,不用老师教,你们都知道了。我们来点挑战性的。想挑战吗?请听题:如果你是一个工厂产品检测员,现在有243个零件,里面有1个是次品,用天平称,至少称几次一定能够保证找到次品?

师:哪位同学大胆来猜测一下?

生1,生2,生3

师:没关系,既然是猜测,就允许出错,只要� 师:你能验证到第几次呢?有办法吗?数量太多验证不出来那怎么办呢? 生:可以从小点开始研究。

师:你们觉得可以从多少开始研究?生;??师说:那我们就从5开始好吗? 请看大屏幕。

课件出示问题:这里有 5 瓶钙片,其中 1 瓶少了 3 片,是次品,你能设法把它找出来。

1、生独立审题

师:这道题什么意思?

(课件出示要求)要求:同桌合作用手模拟天平,用5个学具(圆片)当钙片。

思考:(1)把待测物品(5 瓶钙片)分成几份?每份是多少?

(2)假如天平平衡,次品在哪里?

(3)假如天平不平衡,次品在哪里?

(4)至少称几次能保证找出次品来?

2、学生独立活动。

3、学生汇报、演示。

a、第1个学生汇报,是分成5(2,2,1),天平每边各放两个,如果天平不平衡,那么次品就在上扬的那两个中,再把那两个分别放在天平的两边,哪边上扬,那么那个就是次品,至少要称2次。如果天平平衡,那么天平外那个就是次品,只要称一次。当学生在说的时候教师相应的板书。师:你们听懂了吗?谁再来说说他是怎么称的。(课件演示。)

师:称一次能保证找到次品吗?对吗,运气好可能一次能找到次品,如果运气不好,那就要两次才能保证找到次品。

还有不同的称法吗?

b、第2个学生汇报分法:分5份(1,1,1,1,1)每份1个。天平每边各放1个,如果天平不平衡,那个上扬的那个就是次品。

师:找到次品了吗?能保证找到吗?

生1:用这种方法称球,称1次只是可能找出次品,而不是一定能找出次品,如果天平不平衡,那次品就在剩下的3个中,需要再称一次,也就是至少要称2次才能保证找到次品。(教师板书。)谁也来说说这种称法。(课件演示。)师:虽然方法不同,却得到一个相同的结论。那就是5个物体中找到1个次品,用天平称,至少称(2)次保证能找出次品来。

师:好了。3个,5个的问题解决了,在一些物品中找到1个次品,大家已经有了初步的手段和方法了。

现在我们把数量再增加些,看看能否找到一种最简便的方法。

三、寻找找次品的最优方法,体现缩小范围的思想方法。

1、出示题目 :有9个网球,其中一个网球是次品,它比其它的网球重一些,用天平称,至少称几次就保证能找出次品来?

师:这题是什么意思?请学生说说题意。

生:有九个网球,其中一个重一些,是次品,用天平称,称几次能保证找到次品

师:大家可以选择学具摆,也可以在纸上像老师这样用图表示,先想把9个网球分成几份,每份是多少。

(2)假如天平平衡,次品在哪里?

(3)假如天平不平衡,次品在哪里?

(4)至少称几次能保证找出次品来?再想一想称一次至少能排除几个,也就是次品一定不在哪几个中。开始吧。

师:刚才老师发现大家的有很多种不同的方法,现在把你的方法与小组同学交流一下,小组长负责把每种不同的方法记录在这张实验报告单中。大家再观察实验报告单并比一比哪一种是最优策略,想一想为什么?并选一个代表汇报你们组的方法。

2、学生活动

3、汇报分法及操作过程,教师相应出示课件。

师:哪一组同学的代表愿意来汇报一下。(点出相应的课件)

①(分3份(4、4、1)的方法)生:天平两边各放在4个,如果天平平衡,那剩下的那个就是次品,如果两边不平衡,下沉的那个盘子的4个再分成(2,2),分别放在天平的两边,这时一定有一边下沉,然后再把那两个分成(1,1)放在天平的两边,这时下沉的那边一定是次品,保证能找出次品需要称的3次。师:你这种方法称一次至少排除几个?出示课件:5个

师:还有不同的方法吗?

②(分5份(2、2、2、2、1的方法)

师:2个2的称,如果不平衡,次品在下沉的那个盘子里,再把2个分成(1,1)下沉那个就是次品。如果两边平衡,次品在剩下的5个中,这时天边两边再放两个,如果平衡,那么剩下的那个是次品,如果不平衡,再把下沉的那两个分别放在天平的两边,保证能找出次品需要称的3次。师:你这种方法称一次至少排除几个?出示课件;4个

还有其他的方法吗?

③(分3份(3、3、3)的方法)生:天平两边各放三个,如果天平平衡,那次品就在剩下的三个中,如果不平衡,那么次品就在下沉的那一边。再把3分成(1,1,1)如果两边平衡,次品就是剩下的那一个,如果两边不平衡,次品就是较轻的那一个。保证能找出次品需要称2次。师:你这种方法称一次至少排除几个?板书:6个

还有不同的方法吗?9:(2,2,2,3)3次9:(1,1,1,1,1,1,1,1,1)4次。

师:9有很多分法,可是能保证找到次品需要称的次数是不一样的,最好的方法是怎么样分保证找到次品的次数最少?为什么呢?

生:分成三份,称一次排除的个数比较多,师:那我们要先考虑分成几份呢?(3份)

师:这两种都是分成三份,哪一种更好?为什么?生:平均分成3份保证称一次排除的个数是最多的。师:那谁再来说说这种的称法?出示课件。

师;最好的方法是怎么样分保证找到次品的次数最少?

出示课件:分3份平均分

3)小结:9个物品中找到1个次品,用天平称,平均分成3份,至少称2次保证可以找到次品。

三、推测:

师:那从27个物品中找一个次品需要称几次就能保证找到次品,你是怎么样分的。

生:27(9,9,9)9个物品中找到1个次品,至少称2次保证可以找到次品。27个物品中找一个次品需要称3次就能保证找到次品。

师:你真是聪明的孩子。那81个呢?怎么样分?

生:81(27,27,27)只需要称4次就能找到次品

师:243个?师:刚开始的时候大家说多少次啊?现在是不是有一种不可思议的感觉?这就是数学的魅力,它的魅力我们是无法用语言去形容的,是需要用心去体会的。

四、全课总结。

师:今天我们主要是研究物品总数是3的倍数如何来找次品,如果不是3的倍数,比如10个,11个,25个等等,又该如何呢?这就是我们下一节要探索的内容。大声告诉我今天我们学了一节什么课?如何找次品?什么样的方法是最简单的?谈谈你的收获吧。

板书:找 次 品

5(,1)2次 保证找到

5(,1)2次

找次品优质课一等奖教学设计 篇9

【课前思考】

“找次品”是人教版教材五年级下册(数学广角)的内容,旨在通过“找次品”渗透优化思想,培养推理能力,让学生葱粉感受到数学与日常生活的密切联系。优化是一种重要的数学思想方法,运用它可有效地分析和解决问题。教材以“找次品”这一探索性操作活动为载体,让学生通过观察、猜测、实验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理等方式体会运用优化策略解决问题的有效性,感受数学的魅力。

“找次品”问题是学生从未接触过的、需要重新建构的内容,学生会有新鲜感和探索求知的欲望。但对于大多数同学而言,它又是一个高难度的充满挑战的内容,因此部分同学在学习时会有一定的困难。

本课的教学内容比较多,学习这些内容需要比较高的思维水平。如何让学生正在地参与课堂的探究活动、解决问题并在此过程中感悟发现规律呢?我做了如下的教学设计进行实践探索。

【教学目标】

1、通过观察与操作,猜想验证和推理,体验找次品方法的多样化和最优化,发现和理解“把物品总数平均分成三份来称,保证找出次品的次数会最少”。

2、通过找次品的探究活动,渗透“化归”和“优化”的数学思想,培养合情推理能力,提高表达交流的能力,养成全面思考的习惯。

3、经历由直观演示操作逐步到逻辑推理抽象概括,体会数学的简洁美和神奇魅力,激发学习数学的兴趣。

【教学重点】

探索出找次品方法的多样化和最优化方法,理解和体会最优方案的特点。

【教学难点】

1、能够用简明的方法记录找次品的思维过程。

2、在观察、比较中初步体会找次品最优方案的特点。

【课前准备】

纸质天平、棋子、操作记录单、课件

【课前游戏】

摸奖游戏

1、课件:从8个笑脸中摸一个奖品(从8个中摸中一个真不容易)

师:要使中奖容易些,你会增加笑脸的个数,还是减少笑脸的个数?

2、从4个笑脸中摸奖(体会更容易中奖)。

3、从2个笑脸中摸奖(体会“保证”意义)。

师:要保证中奖,我们得摸几次?

【设计意图:数学教学要考虑学生的认知发展水平和已有的经验。逐步逼近缩小范围的数学思想是有生活原型的,通过这个游戏,激活了学生生活经验,同时调动了学生上课的积极性。】

【教学过程】

一、情境导入

师:你知道3月15日是什么日子吗?(消费者权益保护日)

师:在315晚会上老师看到这样一则新闻:(课件出示)

一些不法商人往黄金里加金属铱冒充千足金来销售,加铱后的黄金用肉眼无法辨别,但重量会增加。

(你了解了哪些信息?)

【设计意图:用生活情境引出学习课题,感受数学源自生活。】

过渡:像这种不合格的产品,我们称之为次品,数学中有一类经典的智力问题叫“找次品”,这节课我们就一起来学习找次品。(板书课题)

二、新知探究

1、在2个物品中找次品

(课件出示题目)现在有2个外形和颜色一样的金元宝,其中有一个是加了金属铱的次品(次品重一些),现在请你当黄金检测师,你有什么办法找出这个次品?

(预设:用天平称,天平左右各放1个,往下沉的那个就是次品。)

师:(课件出示天平)能根据重量的轻重,用天平来找次品。在2个金元宝中找一个次品,只要称1次就能找出次品。

【设计意图:明确用天平来找可在重量方面检测出次品的问题。】

2、在3个物品中找次品

(课件出示题目)现在有3个这样的金元宝,有一个是次品(次品重一些),你也会用天平找出这个次品吗?需要称几次?

预设1:需要2次,我在天平两边各放1个,如果平衡,拿下一个再换另外一个,就会下沉,下沉的那个就是次品。

预设2:需要1次,我在天平两边各放1个,如果不平衡,下沉的那个就是次品;如果平衡,那没称的那个就是次品。

(1)你会更欣赏谁的方法?为什么?

【设计意图:感受检测出次品需称的次数可以尽可能少。】

(2)统一记录方法

为了便于交流和记录,我们可以这样记(结合操作步骤):

3个物品,可以用一根横线来表示天平,(板书:)

可以先在天平两边任意各放1个,(板书:1,1),剩下1个在天平外面。(补充板书:3(1,l,1))

这时天平可能会平衡,也可能不平衡(板书:平不平),如果是平衡,天平外那个就是次品,需称一次就找出了次品;如果不平衡,次品就是下沉的那一个,也只需要称一次就找出了次品。3(1,1,1)<平1次1次不平1次。

【设计意图:能够用简明的方法记录找次品的思维过程。】

3、在5个物品找次品

(1)想一想:5个金元宝中找一个次品(次品重一些),需要称几次才能找出这个次品?你会怎么称?

(2)小组合作,把称的方法记下来。

(3)小组汇报称法

预设1:在天平的左盘放1个,其余4个逐个放在右盘,直到找到次品为止。

预设2:在天平的左右两边各放2个,如果平衡剩下那个就是次品,1次找出了次品;如果不平衡,次品就在较重的那2个里面,再把较重的那2个放在天平的左右两边再称一次,这样2次就找出次品了。

记录:5(2,2,1)<平1次

不平2(1,1)2次

预设3:5(1,1,3)<平3(1,1,1)2次

不平1次

直观演示:课件演示称法

(4)理解“保证”“至少”的意义:我们找出了多种称法。要保证找出这个次品,至少要称几次?

天平有平衡和不平衡两种情况,我们不能保证一定衡,所以要保证找出我们就要考虑不平衡的情况,也就要做最坏的打算。并且在能保证找出次品的情况下,称的次数可以尽可能的少。

(板书擦出不能保证,也不是最少次数的情况,写上“保证找出,至少2次”)

【设计意图:感知称法的多样化,理解“保证”“至少”的意义。】

4、在8个物品中找次品

(1)想一想:8个中有1个次品(次品重一些),有几种称法?至少要称几次才能保证找到次品?

(2)猜一猜:

①猜一猜,会有哪些称法?

(4,4)(2,2,2,2)(1,1,6)(2,2,4)(3,3,2)

②猜一猜:哪种称法保证找出次品的次数会最少。

(3)同桌合作合作验证猜想。

(4)汇报交流

(5)优化选择:多种称法,如果让你来选择,你会选择哪种称法?为什么?

(3,3,2)(保证找出次品的次数最少)

(6)反思:是不是分的组越多就越好?或者越少就越好?

【设计意图:优化称法。】

5、在9、10个物品中找次品

学生自主选择从“9个中找一个次品(次品重一些)”或“10个中找一个次品(次品重一些)”进行再次实践。

预设:学生能较快找到具体的答案9个(3,3,3)称2次;10个(3,3,4)或(2,2,6)(4,4,2)均为称3次。

【设计意图:较为开放的环节,学生按照自己的认识和理解自主选择方法,从而更好地引导学生发现规律】

6、发现规律,发现数理

(1)观察思考:结合几次称量的情况进行对比,这些不同的情况之中有什么共同之处吗?

预设:都是分成三组,每组中的数据都很接近,而且都有两个以上的数据是相同的。

(2)继续观察:称8个、9个的最佳办法都是唯一的,而称10个出现了三种分三组的办法,再观察,这三种方法哪一种和称8个、9个的办法更相似?

(3)发现规律:�

为什么每次不多不少总是分三组好?

【设计意图:发现规律,总结方法,形成解决问题的策略。】

三、规律应用

有28瓶水,其中27瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?

【设计意图:巩固理解,体验成功。】

四、总结

(1)都说数学都思维的体操,相信这节课同学都有收获说说你都收获了什么?

(2)你还有什么疑问吗?(可看书质疑)

找次品优质课一等奖教学设计 篇10

关于找次品教学设计

《找次品》是人教版数学五年级下册第七单元数学广角的内容。现实生活生产中的次品有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等。这节课的学习中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。

新课程标准中指出:培养学生良好的数学思维能力是数学教学要达到的重要目标之一。因而新课标教材系统而有步骤地渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。通过教学使学生受到数学思想方法的熏陶,形成探索数学问题的兴趣与欲望,逐步发展数学思维能力。

找次品的教学,旨在通过找次品渗透优化思想,让学生充分感受到数学与日常生活的密切联系。优化是一种重要的数学思想方法,运用它可有效地分析和解决问题。本节课以找次品这一操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养观察、分析、推理以及解决问题的能力。

学情分析

解决问题的策略研究学生已经不是第一次接触,此前学习过的沏茶、田忌赛马、打电话等都属于这一范畴,在这几节课的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。另外,本节课中会涉及到的可能、一定、可能性的大小、分数的通分等知识点学生在此之前都已学过的。

本节课学生的探究活动中要用到天平,在以往学习等式的性质等知识时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握。

新课程实施已有几年的时间,几年来,小组合作交流、自主探究的学习方式已为广大学生所接受,成为学生比较喜爱的主要学习方式,在小组学习中学生能够较好地分工、合作、交流,较好地完成探究任务。

教学目标

知识技能目标:让学生初步认识找次品这类问题的基本解决手段和方法。

过程方法目标:学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

情感态度价值观目标:感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

教学方法

1、加强学生的试验、操作活动。本节课内容的活动性和操作性比较强,可以采取学生动手实践、小组讨论、探究的方式教学。先多给学生一些时间,让他们充分地操作、试验、讨论、研究,找到解决问题的多种策略。活动完成后再让学生分组汇报结果。

2、重视培养学生的猜测、推理能力和探索精神。引导学生从纷繁复杂的'方法中,从简化解题过程的角度,找出最优的解决策略。引导学生逐步脱离具体的实物操作,转而采用列表、画图等方式进行较为抽象的分析,实现从具体到抽象的过渡。

教学过程

课前谈话

出示3瓶钙片,说明:在这3瓶钙片中有一瓶少装了几颗,你能帮我找出是哪一瓶少装了吗?

学生自由发言。

在同学们说的这些方法中,�

出示天平。说说怎样利用天平来找出这瓶钙片呢?

学生回答后小结:可以把其中的2瓶分别放在天平的两个托盘中,如果天平平衡则没放上去的那一瓶少装了;如果天平不平衡则翘起一端的托盘中所放的那一瓶少装了。

揭示课题:在生活中常常有这样的情况,在一些看似完全相同的物品中混着一个质量不同(轻一点或是重一点)的物品,需要想办法把它找出来,像这一类问题我们把它叫做找次品,这节课我们就一起来研究如何利用天平找次品。

设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在教学例1前,先以3个待测物品为起点,降低了学生思考的难度,能较顺利地完成初步的逻辑推理:那就是并不需要把每个物品都放上去称,3个物品中把2个放到天平上,无论平衡还是不平衡,都能准确地判断出哪个是次品。只有理解了这些,后面的探究、推理活动才能顺利进行。

设疑:如果老师有2187瓶钙片,其中一瓶少了一颗,用天平几次保证能找到次品?请你猜一猜。

找次品的解决方法

小组合作:从5瓶钙片中找出少装了的那瓶次品。

指名汇报,根据学生的回答同步用图示法板书学生的操作步骤:

平衡:11次

不平衡:2(1,1)2次

从这儿我们可以看出,用天平找次品的方法是多种多样的。

设计意图:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。在这一环节中,让学生动手动脑,亲身经历分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。但考虑到学生用天平来称在操作上会很麻烦,以前对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握,为了便于学生操作和节省时间,所以让学生用手模拟天平来进行实践探究。图示法较为抽象,对学生来说不容易理解,在这里只是让学生初步感知,教学时教师根据学生的回答同步板书,便于学生理解每项数据、每种符号的含义,为后面的学习打下一定的基础。

观察板书的图示法,思考:至少称几次就一定能找到这个次品呢?

设计意图:学生在实际的操作中,可能会出现提前找到次品的情况,如果运气好的话称1次就可能找到次品。在这里必须引导学生在理解至少称几次就一定能找到这个次品的含义,在此基础上让学生明白:当我们选用一种方法来分析的研究问题时,应注意把可能出现的结果考虑全面,才能得出正确的结论。同时也为下面的填表、探究优化策略作好准备。

探索最优策略

在9个零件中有一个次品(次品重一些),用天平称,至少称几次就一定能找到这个次品呢?

小组分工合作:用学具摆一摆并尝试画图表示摆的过程,完成下表。

零件个数

分成的份数

每份的个数

至少称几次就一定能找到这个次品

设计意图:这一环节是本节课的重点也是难点,必须进行小组活动,发挥集体的智慧才能突破这个难点。为了保证小组活动的有效性,活动前先在小组内进行分工,使每个成员都明确自己的任务。让学生摆学具而不再使用天平,并尝试用图示法记录操作过程,是完成由具体到抽象过渡中的重要一步。

指名汇报,根据学生的回答填表并板书:

平衡3(1,1,1)

9(3,3,3)

不平衡3(1,1,1)2次

平衡1

9(4,4,1)平衡2(1,1)3次

不平衡4(1,1,2)

不平衡1

平衡1

平衡(2,2,1)

9(2,2,2,2,1)不平衡2(1,1)3次

不平衡2(1,1)

9(1,1,1,1,1,1,1,1,1)4次

引导观察:用哪一种方法保证能找出次品需要称的次数最少?

小结:平均分成3份去称,保证能找出次品所需的次数最少。

设计意图:小组汇报时将学生的操作过程用图示法板书,使学生进一步理解并初步掌握这种分析方法。待测物品数量为9个时,只有平均分成3份称才能保证2次就找到次品,其它任何一种分法都比2次要多,这样便于学生发现规律。

解决课始提出的问题,只需7次,让学生从强烈的对比中感受数学的魅力。

不能平均分成3份的应该怎样分呢?

全班合作:用图示法从10个和11个零件中找出一个次品。

(合作要求:将全班所有的小组分成2部分,一部分小组分析从10个零件中找出一个次品,另一部分小组分析从11个零件中找出一个次品。小组内先共同讨论出几种不同的分法,再2人合作选一种(组内不重复)用图示法分析。)

指名汇报,投影展示学生的分析过程。

引导观察,感知规律:一是把待测物品分成三份;二是要分得尽量平均,能够均分的就平均分成3份,不能平均分的,也应该使多的一份与少的一份只相差1。

设计意图:设计待测物品数量为10个和11个,带领学生经历由特殊到一般的数学分析模式,在此基础上使学生比较全面地感知找次品这类问题的基本解决手段和方法。在这一环节中,让学生完全脱离具体的实物操作,实现从具体形象思维到抽象逻辑思维的过渡,但考虑到学生独立用图示法分析仍有难度,因而采用两个合作的方式进行。把学生分成2部分分别分析10个和11个,并要求小组内选方法时组内不重复,这样能提高探究的效率,在较短的时间内把几种情况都分析到。

你知道这是为什么吗?你能不能对这个规律作出解释?

设计意图:4-6年级学段目标中指出:在解决问题的过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明,能表达解决问题的过程,并尝试解释所得的结果。学生通过合作探索、归纳总结出了找次品的最优策略,解释这个规律能使学生对得出结论从感性认识上升为理性认识。要想用比较少的次数找到次品,那么每称一次都应该将次品锁定在一个尽可能小的范围内,因为天平有2个托盘,每称一次不但能对放上去的2份进行推理判断,还能对没放上去的1份进行推理判断,所以每称一次保证能锁定范围的最小值是待测物品的三分之一左右。

拓展提高

猜测:这种方法在待测物品的数量更大时是否也成立呢?

第135页做一做:

有瓶水,除1瓶是盐水略重一些外,其他几瓶水质量相同。至少称几次能保证找出这瓶盐水?

请你选择一个合适的数来解这道题,独立用图示法分析,验证你的猜测是否正确。

设计意图:本节课中提供的归纳方法在本质上是一种不完全归纳法,对数量更大时的情形是否适用,还需要通过试验来检验。先让学生进行猜测,引发学生进一步进行归纳、推理等数学思考活动,再将做一做进行适当的改编,设计成较为开放的问题,既能满足不同层次学生的需求,又可以用更多的数据对总结的规律进行验证。如果课堂时间不允许,这一环节也可

找次品优质课一等奖教学设计 篇11

一、教学目标

(一)知识与技能

利用天平,结合观察、猜测、图示、推理等活动,理解“找次品”问题的基本原理,发现解决这类问题的最优策略。

(二)过程与方法

以“找次品”活动为载体,经历由多样到优化的思维过程,培养学生的优化意识。

(三)情感态度和价值观

感受数学在日常生活中的广泛应用,发展学生的应用意识和解决实际问题的能力。

二、教学重难点

教学重点:探究解决“找次品”问题的最优策略。

教学难点:用图示或文字表示找次品的过程。

三、教学准备

天平,多媒体课件。

四、教学过程

(一)创设情境,引入原理

1、情境导入,揭示课题。

(1)课件出示例1:有3瓶钙片,其中一瓶少了3片。你能设法把它找出来吗?

(2)理解题意。

学生可能会说:倒出来数一数,或掂一掂、称一称……

教师根据学生的回答解释:生产或生活中有时需要从几个物体中找特别重或特别轻的一个,在数学中我们把这类问题称为“找次品”问题。

如果两个物体的差异很大、很明显,可以用数一数或掂一掂的方法。如果差异不明显或物体数量很多(例如有30瓶钙片),用数一数或掂一掂的方法可能不准确或不方便,此时可以用天平帮助我们快速找到“次品”。

【设计意图】理解问题是分析问题和解决问题的前提,当学生面对例1,首先想到的肯定是数一数或掂一掂,因为他们缺少使用天平的生活经验,所以让他们了解“数”和“掂”的局限性是非常有必要的。

2、合情推理,理解原理。

(1)了解天平的使用方法。

教师出示天平,并让学生想象:如果在天平的左边放一支粉笔,在天平的右边放一本数学书,天平会怎么样?为什么?

学生回答:天平的左边高,右边低。因为数学书比粉笔重。

教师继续追问:如果在天平的左边放一本数学书,在天平的右边也放一本数学书,现在天平会怎么样?为什么?

学生回答:天平会平衡,因为左右两边一样重!

教师根据学生的回答,在课件中出示:天平平衡,两边一样重;天平不平,下沉那边重。

【设计意图】学生没有使用天平的经验,教师引导学生通过想象和观察丰富表象扫除学习障碍,为进一步学习找次品做好准备。特别地,对两种情况的概括有利于学生探究找次品的方法。

(2)如何利用天平找次品?

如果只有两瓶钙片,放在天平上称一次就知道哪一瓶少了3片,因为它会轻一点。现在有3瓶,那么要称几次呢?为什么?

学生:称一次。左右两边各放1瓶,如果天平平衡,剩下的那瓶就是次品;如果天平不平衡,天平翘起的一端所放的是次品。

教师分别演示天平达到平衡和出现不平衡的两种情况,请同学进行判断并说明理由。

【设计意图】根据天平的情况推断出剩下一瓶的情况,是解决“找次品”问题的关键。此处将实验演示和语言表达结合起来,帮助学生理解原理。

3、交流图示,掌握方法。

你能想办法把用天平找次品的过程,清楚地表示出来吗?

(1)可以用一个“△”加一条短横线表示天平,用长方形表示钙片。

(2)为了方便,还可以给每瓶钙片加上编号。

学生完成后,将作品通过实物投影仪进行展示交流。

【设计意图】图示是对问题进行抽象、概括的一种方式,通过图示使找次品的方法具有概括性,同时也可以培养学生的抽象思维能力。在例1教学后及时进行方法的总结,可以分散本课的难点,有利于学生发现解决“找次品”问题的最优策略。

(二)探索规律,优化策略

1、理解题意。

(1)课件出示例2。

8个零件里有1个是次品(次品重一些)。假如用天平称,至少称几次能保证找出次品?

(2)大胆猜测。

教师:至少称几次能保证找出次品?

学生:如果运气好一次就能找到次品,所以至少一次。

学生:一次不能保证找出次品,因为如果运气不好,就找不到次品了。

学生:每次称2个零件,4次保证找出次品。

教师:“至少称几次能保证找出次品”是什么意思?

学生:既要保证找出次品,又要次数最少。

【设计意图】这个讨论是非常必要的,学生第一次遇到这类问题,可能不能兼顾两端,说“一次”的同学忽视了“保证”,说“4次”的同学没有考虑到至少。通过同学间的互相交流,否定错误,澄清认识,确定研究方向,在探究、解决问题的过程中不走错路,少走弯路,有利于课堂教学目标的实现。

找次品优质课一等奖教学设计 篇12

《找次品》教学设计

一、教学目标

(一)知识与技能

利用天平,结合观察、猜测、图示、推理等活动,理解“找次品”问题的基本原理,发现解决这类问题的最优策略。

(二)过程与方法

以“找次品”活动为载体,经历由多样到优化的思维过程,培养学生的优化意识。

(三)情感态度和价值观

感受数学在日常生活中的广泛应用,发展学生的应用意识和解决实际问题的能力。

二、教学重难点

教学重点:探究解决“找次品”问题的最优策略。

教学难点:用图示或文字表示找次品的过程。

三、教学准备

天平,多媒体课件。

四、教学过程

(一)创设情境,引入原理

1.情境导入,揭示课题。

(1)课件出示例1:有3瓶钙片,其中一瓶少了3片。你能设法把它找出来吗?

(2)理解题意。

学生可能会说:倒出来数一数,或掂一掂、称一称……

教师根据学生的回答解释:生产或生活中有时需要从几个物体中找特别重或特别轻的一个,在数学中我们把这类问题称为“找次品”问题。

如果两个物体的差异很大、很明显,可以用数一数或掂一掂的方法。如果差异不明显或物体数量很多(例如有30瓶钙片),用数一数或掂一掂的方法可能不准确或不方便,此时可以用天平帮助我们快速找到“次品”。

【设计意图】理解问题是分析问题和解决问题的前提,当学生面对例1,首先想到的肯定是数一数或掂一掂,因为他们缺少使用天平的生活经验,所以让他们了解“数”和“掂”的局限性是非常有必要的。

2.合情推理,理解原理。

(1)了解天平的使用方法。

教师出示天平,并让学生想象:如果在天平的左边放一支粉笔,在天平的右边放一本数学书,天平会怎么样?为什么?

学生回答:天平的左边高,右边低。因为数学书比粉笔重。

教师继续追问:如果在天平的左边放一本数学书,在天平的右边也放一本数学书,现在天平会怎么样?为什么?

学生回答:天平会平衡,因为左右两边一样重!

教师根据学生的回答,在课件中出示:天平平衡,两边一样重;天平不平,下沉那边重。

【设计意图】学生没有使用天平的经验,教师引导学生通过想象和观察丰富表象扫除学习障碍,为进一步学习找次品做好准备。特别地,对两种情况的概括有利于学生探究找次品的方法。

(2)如何利用天平找次品?

如果只有两瓶钙片,放在天平上称一次就知道哪一瓶少了3片,因为它会轻一点。现在有3瓶,那么要称几次呢?为什么?

学生:称一次。左右两边各放1瓶,如果天平平衡,剩下的那瓶就是次品;如果天平不平衡,天平翘起的一端所放的是次品。

教师分别演示天平达到平衡和出现不平衡的两种情况,请同学进行判断并说明理由。

【设计意图】根据天平的情况推断出剩下一瓶的情况,是解决“找次品”问题的关键。此处将实验演示和语言表达结合起来,帮助学生理解原理。

3.交流图示,掌握方法。

你能想办法把用天平找次品的过程,清楚地表示出来吗?

(1)可以用一个“△”加一条短横线表示天平,用长方形表示钙片。

(2)为了方便,还可以给每瓶钙片加上编号。

学生完成后,将作品通过实物投影仪进行展示交流。

【设计意图】图示是对问题进行抽象、概括的一种方式,通过图示使找次品的方法具有概括性,同时也可以培养学生的抽象思维能力。在例1教学后及时进行方法的总结,可以分散本课的难点,有利于学生发现解决“找次品”问题的最优策略。

(二)探索规律,优化策略

1.理解题意。

(1)课件出示例2。

8个零件里有1个是次品(次品重一些)。假如用天平称,至少称几次能保证找出次品?

(2)大胆猜测。

教师:至少称几次能保证找出次品?

学生:如果运气好一次就能找到次品,所以至少一次。

学生:一次不能保证找出次品,因为如果运气不好,就找不到次品了。

学生:每次称2个零件,4次保证找出次品。

教师:“至少称几次能保证找出次品”是什么意思?

学生:既要保证找出次品,又要次数最少。

【设计意图】这个讨论是非常必要的,学生第一次遇到这类问题,可能不能兼顾两端,说“一次”的同学忽视了“保证”,说“4次”的同学没有考虑到至少。通过同学间的互相交流,否定错误,澄清认识,确定研究方向,在探究、解决问题的过程中不走错路,少走弯路,有利于课堂教学目标的实现。

2.探索规律。

(1)分组探究,并将探索的情况填入下表。

(2)全班交流。

①分别请称4次、3次、2次的小组代表介绍本组的方法(此时学生对使用复杂的图示介绍方法可能还有困难,教师可以根据学生的回答帮助学生进行图示,为学生做出正确示范)。

②每次每边称1个的小组为什么需要的次数比较多?

学生:每次称的零件数量太少。

③每次每边称4个的小组为什么反而不如每次每边称3个的小组完成得快?

学生:每次每边称3个,称一次就可以将次品确定在更小的。范围内。

【设计意图】问题②和问题③迫使学生去思考采用不同方法造成次数不同的原因,避免学生知其然而不知其所以然。因为偶然性因素的影响,学生不太容易发现“尽量三等分”这个最优化的策略。此时可以引导学生回顾例1,发现利用天平不仅可以对天平两端的零件进行判断,而且可以对没有称量的那一部分做出判断。

(3)概括最优化策略。

①如果9个零件中有1个次品(次品重一些),至少称几次能保证找出次品?怎么称?

学生:平均分成三份,每边3个,如果天平平衡,次品在剩下的3个零件中;如果天平不平衡,次品在天平下沉一端所放的3个零件中。然后再每边称1个,如果天平平衡,次品就是剩下的那1个零件;如果天平不平衡,次品就是天平下沉一端所放的那个零件。

②你发现什么规律?

学生:将所有零件平均分成三部分,保证找到次品需要的次数最少。

③用你发现的规律找出10个、11个零件中的1个次品(次品重一些),看看是不是保证找出次品的次数也是最少的?

先让学生小组讨论交流,并将找的过程用图示法记录下来,最后借助实物投影与全班进行交流。

【设计意图】通过两次操作得出结论属于不完全概括,属于猜测,而且在小学阶段也无法严密证明,只能通过大量的事实加以验证。验证的过程既可以加深理解,也可以提升学生的运用水平,并通过交流提高熟练程度。

(三)应用知识,解决问题

1.5瓶钙片中有1瓶是次品(轻一些),完成下面找次品的过程。

2.有15盒饼干,其中的14盒质量相同,另有1盒少了几块。如果能用天平称,至少称几次可以保证找出这盒饼干?

教师提示:将15盒饼干三等分,每份5盒,称一次可以确定那盒少了几块的饼干在哪5盒当中。然后参考前一题的方法找出这盒饼干。

3.有28瓶水,其中27瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?

教师提示:将28瓶水按照9瓶、9瓶、10瓶分为三份,称一次可以确定这瓶盐水在哪一份当中。如果是在某个9瓶当中,则继续三等分找出这瓶盐水;如果在10瓶当中,可以考虑按照3瓶、3瓶、4瓶的方法继续分组,找出这瓶盐水。

【设计意图】这一环节中对练习二十七中的练习与“做一做”的顺序进行了微调,是为了体现由易到难的教学顺序。数量越大,操作和思考的过程就越复杂,对学生而言难度也越大。特别是例2后面的“做一做”对学生而言是有难度的,一是因为要称4次,二是因为28不能平均分成三等份,所以进行了调整。

(四)课堂小结,拓展延伸

1.课堂小结。

(1)今天研究了什么问题?

(2)找次品的最优化策略是什么?

2.知识拓展。

今天我们研究的问题都是已知次品比较重或比较轻,如果不知道它比较重还是比较轻,你还能找出次品吗?请有兴趣的同学回家思考。

【设计意图】教材中的“找次品”是一种理想化的问题,把不知次品轻重的问题留给学生思考,给学生更大的想象空间,可以使学有余力的学生思维能力得到更大的发展。