首页 > 学习方法 > 初中学习方法 > 初二学习方法 > 八年级数学 > 数学初二上册知识点总结归纳正文

《数学初二上册知识点总结归纳》

时间:

数学是一门基础性的科学,值得每个人去学习,尤其是孩子,更要去学习数学,并且以此来构架自己的思维体系。下面小编为大家带来数学初二上册知识点总结归纳,希望大家喜欢!

数学初二上册知识点

平方根表示法:一个非负数a的平方根记作,读作正负根号a。a叫被开方数。

中被开方数的取值范围:被开方数a≥0

平方根性质:①一个正数的平方根有两个,它们互为相反数。

②0的平方根是它本身0。③负数没有平方根

开平方;求一个数的平方根的运算,叫做开平方。

平方根与算术平方根区别:

1、定义不同。2表示方法不同。3、个数不同。4、取值范围不同。

联系

2、二者之间存在着从属关系。2、存在条件相同。3、0的算术平方根与平方根都是0

含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。

求正数a的算术平方根的方法;

完全平方数类型

①想谁的平方是数a。②所以a的平方根是多少。③用式子表示。

求正数a的算术平方根,只需找出平方后等于a的正数。

三个重要的非负数:

求正数a的平方根的方法;完全平方数类型

①想谁的平方是数a。②所以a的平方根是多少。③用式子表示=。

公式:(a≥0)∣a∣=

数学初二上册基础知识点

一、函数:

一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

二、自变量取值范围

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

三、函数的三种表示法及其优缺点

(1)关系式(解析)法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图象法

用图象表示函数关系的方法叫做图象法。

四、由函数关系式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

五、正比例函数和一次函数

1、正比例函数和一次函数的概念

一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。

2、一次函数的图像:所有一次函数的图像都是一条直线

3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。

第七章知识点

1、二元一次方程

含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。

2、二元一次方程的解

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

3、二元一次方程组

含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

4、二元一次方程组的解

二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

5、二元一次方程组的解法

(1)代入(消元)法(2)加减(消元)法

第八章知识点

1、刻画数据的集中趋势(平均水平)的量:平均数、众数、中位数

2、平均数

(2)加权平均数:

3、众数

一组数据中出现次数最多的那个数据叫做这组数据的众数。

4、中位数

一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

数学初二上册知识点归纳

(3) 几何表达式举例:

(1) ∵ AB = EF

∵ ∠B=∠F

又∵ BC = FG

∴ΔABC≌ΔEFG

(2) ………………

(3)在RtΔABC和RtΔEFG中

∵ AB=EF

又∵ AC = EG

∴RtΔABC≌RtΔEFG

12.角平分线的性质定理及逆定理:

(1)在角平分线上的点到角的两边距离相等;(如图)

(2)到角的两边距离相等的点在角平分线上.(如图)

几何表达式举例:

(1)∵OC平分∠AOB

又∵CD⊥OA CE⊥OB

∴ CD = CE

(2) ∵CD⊥OA CE⊥OB

又∵CD = CE

∴OC是角平分线

13.线段垂直平分线的定义:

垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线.(如图)

几何表达式举例:

(1) ∵EF垂直平分AB

∴EF⊥AB OA=OB

(2) ∵EF⊥AB OA=OB

∴EF是AB的垂直平分线

14.线段垂直平分线的性质定理及逆定理:

(1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(如图)

(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.(如图)

几何表达式举例:

(1) ∵MN是线段AB的垂直平分线

∴ PA = PB

(2) ∵PA = PB

∴点P在线段AB的垂直平分线上

15.等腰三角形的性质定理及推论:

(1)等腰三角形的两个底角相等;(即等边对等角)(如图)

(2)等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一;(如图)

(3)等边三角形的各角都相等,并且都是60°.(如图)

(1) (2) (3) 几何表达式举例:

(1) ∵AB = AC

∴∠B=∠C

(2) ∵AB = AC

又∵∠BAD=∠CAD

∴BD = CD

AD⊥BC

………………

(3) ∵ΔABC是等边三角形

∴∠A=∠B=∠C =60°

16.等腰三角形的判定定理及推论:

(1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即等角对等边)(如图)

(2)三个角都相等的三角形是等边三角形;(如图)

(3)有一个角等于60°的等腰三角形是等边三角形;(如图)

(4)在直角三角形中,如果有一个角等于30°,那么它所对的直角边是斜边的一半.(如图)

(1) (2)(3) (4) 几何表达式举例:

(1) ∵∠B=∠C

∴ AB = AC

(2) ∵∠A=∠B=∠C

∴ΔABC是等边三角形

(3) ∵∠A=60°

又∵AB = AC

∴ΔABC是等边三角形

(4) ∵∠C=90°∠B=30°

∴AC = AB

17.关于轴对称的定理

(1)关于某条直线对称的两个图形是全等形;(如图)

(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线.(如图)

几何表达式举例:

(1) ∵ΔABC、ΔEGF关于MN轴对称

∴ΔABC≌ΔEGF

(2) ∵ΔABC、ΔEGF关于MN轴对称

∴OA=OE MN⊥AE

18.勾股定理及逆定理:

(1)直角三角形的两直角边a、b的平方和等于斜边c的平方,即a2+b2=c2;(如图)

(2)如果三角形的三边长有下面关系: a2+b2=c2,那么这个三角形是直角三角形.(如图)

几何表达式举例:

(1) ∵ΔABC是直角三角形

∴a2+b2=c2

(2) ∵a2+b2=c2

∴ΔABC是直角三角形

19.RtΔ斜边中线定理及逆定理:

(1)直角三角形中,斜边上的中线是斜边的一半;(如图)

(2)如果三角形一边上的中线是这边的一半,那么这个三角形是直角三角形.(如图)

几何表达式举例:

(1) ∵ΔABC是直角三角形

∵D是AB的中点

∴CD = AB

(2) ∵CD=AD=BD

∴ΔABC是直角三角形

几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)

一 基本概念:

三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.

二 常识:

1.三角形中,第三边长的判断: 另两边之差<第三边<另两边之和.

2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.

3.如图,三角形中,有一个重要的面积等式,即:若CD⊥AB,BE⊥CA,则CD?AB=BE?CA.

4.三角形能否成立的条件是:最长边<另两边之和.

5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和.

6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.

7.如图,双垂图形中,有两个重要的性质,即:

(1) AC?CB=CD?AB ; (2)∠1=∠B ,∠2=∠A .

8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.

9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.

10.等边三角形是特殊的等腰三角形.

11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明.

12.符合“AAA”“SSA”条件的三角形不能判定全等.

13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.

14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.

15.会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.

16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.

17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图.

※18.几何重要图形和辅助线:

(1)选取和作辅助线的原则:

① 构造特殊图形,使可用的定理增加;

② 一举多得;

③ 聚合题目中的分散条件,转移线段,转移角;

④ 作辅助线必须符合几何基本作图.

(2)已知角平分线.(若BD是角平分线)

① 在BA上截取BE=BC构造全等,转移线段和角;

② 过D点作DE‖BC交AB于E,构造等腰三角形 .

(3)已知三角形中线(若AD是BC的中线)

① 过D点作DE‖AC交AB于E,构造中位线 ;

② 延长AD到E,使DE=AD

连结CE构造全等,转移线段和角;

③ ∵AD是中线

∴SΔABD= SΔADC

(等底等高的三角形等面积)

(4) 已知等腰三角形ABC中,AB=AC

① 作等腰三角形ABC底边的中线AD

(顶角的平分线或底边的高)构造全

等三角形;

② 作等腰三角形ABC一边的平行线DE,构造

新的等腰三角形.

(5)其它

① 作等边三角形ABC

一边 的平行线DE,构造新的等边三角形;

② 作CE‖AB,转移角;

③ 延长BD与AC交于E,不规则图形转化为规则图形;

④ 多边形转化为三角形;

⑤ 延长BC到D,使CD=BC,连结AD,直角三角形转化为等腰三角形;

⑥ 若a‖b,AC,BC是角平

分线,则∠C=90°.

数学初二上册知识点总结归纳相关文章

★ 初二数学上册知识点

★ 初二数学知识点上册

★ 初二数学上册知识点全总结

八年级数学上学期知识点

★ 八年级上册数学知识点总结

★ 数学八年级上册知识点

★ 八年级上册数学知识点提纲

★ 初二数学基础知识点归纳总结

★ 初二数学知识点归纳