《数学科目学生学习方法总结》
数学科目学生学习方法总结你写好了吗?学习方法是通过学习实践,总结出的快速掌握知识的方法。以下是小编精心收集整理的数学科目学生学习方法总结,下面小编就和大家分享,来欣赏一下吧。
数学科目学生学习方法总结
一、学会主动预习
新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。因此,培养自学能力,在老师的引导下学会看书,带着老师精心设计的思考题去预习。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。
二、在老师的引导下掌握思考问题的方法
一些学生对公式、性质、法则等背的挺熟,但遇到实际问题时,却又无从下手,不知如何应用所学的知识去解答问题。如有这样一道题让学生解“把一个长方体的高去掉2x厘米后成为一个正方体,他的表面积减少了48平方厘米,这个正方体的体积是多少?”同学们对求体积的公式虽记得很熟,但由于该题涉及知识面广,许多同学理不出解题思路,这需要学生在老师的引导下逐渐掌握解题时的思考方法。这道题从单位上讲,涉及到长度单位、面积单位;从图形上讲,涉及到长方形、正方形、长方体、正方体;从图形变化关系讲:长方形→正方形;从思维推理上讲:长方体→减少一部分底面是正方形的长方体→减少部分四个面面积相等→求一个面的面积→求出长方形的长(即正方形的一个棱长)→正方体的体积,经老师启发,学生分析后,学生根据其思路(可画出图形)进行解答。有的学生很快解答出来:设原长方体的底面长为x,则2x×4=48得:x=6(即正方体的棱长),这样得出正方体的体积为:6×6×6=216(立方厘米)。
三、及时总结解题规律
解答数学问题总的讲是有规律可循的。在解题时,要注意总结解题规律,在解决每一道练习题后,要注意回顾以下问题:
(1)本题最重要的特点是什么?
(2)解本题用了哪些基本知识与基本图形?
(3)本题你是怎样观察、联想、变换来实现转化的?
(4)解本题用了哪些数学思想、方法?
(5)解本题最关键的一步在那里?
(6)你做过与本题类似的题目吗?在解法、思路上有什么异同?
(7)本题你能发现几种解法?其中哪一种最优?那种解法是特殊技巧?你能总结在什么情况下采用吗?把这一连串的问题贯穿于解题各环节中,逐步完善,持之以恒,学生解题的心理稳定性和应变能力就可以不断提高,思维能力就会得到锻炼和发展。
四、拓宽解题思路
在教学中老师会经常给学生设置疑点,提出问题,启发学生多思多想,这时学生要积极思考,拓宽思路,以使思维的广阔性得到较好的发展。如:修一条长2400米的水渠,5天修了它的20%,照这样计算剩下的还需几天修完?根据工作总量、工作效率、工作时间三者的关系,学生可以列出下列算式:
(1)2400÷(2400×20%÷5)—5=20(天)
(2)2400×(1—20%)÷(2400×20%÷)=20(天)。教师启发学生,提问:“修完它的20%用5天,还剩下(1—20%要用多少天修完呢?”学生很快想到倍比的方法列出:
(3)5×(1—20%)÷20%=20(天)。如果从“已知一个数的几分之几是多少,求这个数”的方法去思考,又可得出下列解法:5÷20%—5=20(天)。再启发学生,能否用比例知识解答?学生又会想出:
(4)20%∶(1—20%)=5∶x(设剩下的用x天修完)。这样启发学生多思,沟通了知识间的纵横关系,变换解题方法,拓宽学生的解题思路,培养学生思维的灵活性。
五、善于质疑问难
学启于思,思源于疑。学生的积极思维往往是从有疑开始的,学会发现和提出问题是学会创新的关键。着名教育家顾明远说:“不会提问的学生不是一个好学生。”现代教育的学生观要求:“学生能独立思考,有提出问题的能力。”培养创新意识、学会学习,应从学会提出疑问开始。如学习“角的度量”,认识量角器时,认真观察量角器,问自己:“我发现了什么?我有什么问题可以提?”通过观察、思考,你可能会说说:“为什么有两个半圆的刻度呢?”“内外两个刻度有什么用处?”,“只有一个刻度会不会比两个刻度更方便量呢?”,“为什么要有中心的一点呢?”等等,不同的学生会提出各种不同的看法。在度量形状如“v”时,你可能会想到不必要用其中一条边与量角器零刻度线重合的办法。学习中要善于发现问题,敢于提出问题,即增加主体意识,敢于发表自己的看法、见解,激发创造欲望,始终保持高昂的学习情绪。
六、归纳的思想方法
在研究一般性性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。数学知识的发生过程就是归纳思想的应用过程。在解决数学问题时运用归纳思想,既可认由此发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。因此,归纳是探索问题、发现数学定理或公式的重要思想方法,也是思维过程中的一次飞跃。如:在教学“三角形内角和”时,先由直角三角形、等边三角形算出其内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度。这就运用归纳的思想方法。
七、符号化的思想方法
数学发展到今天,已成为一个符号化的世界。符号就是数学存在的具体化身。英国着名数学家罗素说过:“什么是数学?数学就是符号加逻辑。”数学离不开符号,数学处处要用到符号。怀特海曾说:“只要细细分析,即可发现符号化给数学理论的表述和论证带来的极大方便,甚至是必不可少的。”数学符号除了用来表述外,它也有助于思维的发展。如果说数学是思维的体操,那么,数学符号的组合谱成了“体操进行曲”。现行小学数学教材十分注意符号化思想的渗透。符号化思想在小学数学内容中随处可见,数学符号是抽象的结晶与基础,如果不了解其含义与功能,它如同“天书”一样令人望而生畏。
八、统计的思想方法
在生产、生活和科学研究时,人们通常需要有目的地调查和分析一些问题,就要把收集到的一些原始数据加以归类整理,从而推理研究对象的整体特征,这就是统计的思想和方法。例如,求平均数是一种理想化的统计方法。我们要比较两个班的学习情况,以班级学生的平均数作为该班成绩的标志是有一定说服力的,这是一种最常用、最简单方便的统计方法小学数学除渗透运用了上述各数学思想方法外,还渗透运用了转化的思想方法、假设的思想方法、比较的思想方法、分类的思想方法、类比的思想方法等。从教学效果看,在教学中渗透和运用这些教学思想方法,能增加学习的趣味性,激发学生的学习兴趣和学习的主动性;能启迪思维,发展学生的数学智能;有利于学生形成牢固、完善的认识结构。
总结一下,
(1)细心地发掘概念和公式;
(2)总结相似的类型题目;
(3)收集自己的典型错误和不会的题目;
(4)就不懂的问题,积极提问、讨论;。
(5)注重实战(考试)经验的培养
初中数学学习方法总结
一、多看
主要是指认真阅读数学课本。许多同学没有养成这个习惯,把课本当成练习册;也有一部分同学不知怎么阅读,这是他们学不好数学的主要原因之一。一般地,阅读可以分以下三个层次:
1.课前预习阅读。预习课文时,要准备一张纸、一支笔,将课本中的关键词语、产生的疑问和需要思考的问题随手记下,对定义、公理、公式、法则等,可以在纸上进行简单的复述,推理。重点知识可在课本上批、划、圈、点。这样做,不但有助于理解课文,还能帮助我们在课堂上集中精力听讲,有重点地听讲。
2.课堂阅读。预习时,我们只对所要学的教材内容有了一个大概的了解,不一定都已深透理解和消化吸收,因此有必要对预习时所做的标记和批注,结合老师的讲授,进一步阅读课文,从而掌握重点、关键,解决预习中的疑难问题。
3.课后复习阅读。课后复习是课堂学习的延伸,既可解决在预习和课堂中仍然没有解决的问题,又能使知识系统化,加深和巩固对课堂学习内容的理解和记忆。一节课后,必须先阅读课本,然后再做作业;一个单元后,应全面阅读课本,对本单元的内容前后联系起来,进行综合概括,写出知识小结,进行查缺补漏。
二、多想
主要是指养成思考的习惯,学会思考的方法。独立思考是学习数学必须具备的能力。
同学们在学习时,要边听(课)边想,边看(书)边想,边做(题)边想,通过自己积极思考,深刻理解数学知识,归纳总结数学规律,灵活解决数学问题,这样才能把老师讲的、课本上写的变成自己的知识。
三、多做
主要是指做习题,学数学一定要做习题,并且应该适当地多做些。做习题的目的首先是熟练和巩固学习的知识;其次是初步启发灵活应用知识和培养独立思考的能力;第三是融会贯通,把不同内容的数学知识沟通起来。在做习题时,要认真审题,认真思考,应该用什么方法做?能否有简便解法?做到边做边思考边总结,通过练习加深对知识的理解。
四、多问
是指在学习过程中要善于发现和提出疑问,这是衡量一个学生学习是否有进步的重要标志之一。有经验的老师认为:能够发现和提出疑问的学生才更有希望获得学习的成功;反之,那种一问三不知,自己又提不出任何问题的学生,是无法学好数学的。那么,怎样才能发现和提出问题呢?第一,要深入观察,逐步培养自己敏锐的观察能力;第二,要肯动脑筋,不愿意动脑筋,不去思考,当然发现不了什么问题,也提不出疑问。发现问题后,经过自己的独立思考,问题仍得不到解决时,应当虚心向别人请教,向老师、同学、家长,向一切在这个问题上比自己强的人请教。不要有虚荣心,不要怕别人看不起。只有善于提出问题、虚心学习的人,才有可能成为真正的学习上的强者。
数学学习方法作文
数学是思维的体操。且不谈“粒子之小,火箭之速,化工之巧,地球之变,生物之谜,日用之繁”,处处都闪烁应用数学的光芒,高度抽象的纯粹数学,也有其深刻而动人的美丽,堪称艰深难懂而璀璨美丽的艺术。恰如russell所说:“公正而论,数学不仅拥有真理,而且拥有至高无上的美——一种冷峻严肃的美,如同一尊雕塑。”学习数学不仅为了应试解题,更要培养思考问题的逻辑性与严密性,提升思维品质。
学好数学关键在于思考。看似枯燥无味的数学公式,细心品味其内涵与外延,也能触摸到深刻的美丽。数学教材要通读,从最基本的概念出发,一步步推导出美丽的结论,前后勾连,交织成严密知识网络。记忆公式要学会举一反三,注意不同条件下结论的变化,掌握公式的推广和特例,衍生出解决问题的有效模式。
平时做题时,不要满足于记忆解答,要体会每一步的“动机”,才算是完成了思维训练。只记住步骤而不思索动机,不像在看书,倒像在校稿。习题要精做,关键在于赋予每道题应有的思维分量。习题要精选精做,每做一题,要归纳解题的入口和关键步骤,尝试着改变条件和结论,探索一类题的解法。
各类考试有严格的时间、空间限制,要做到快速、准确地解题,必须是采取一定解题策略,在“理解题目→拟定方案→执行方案→回顾”四个环节里节约时间,提高准确率,争取拿到所有应得的分数。
高考数学的题型颇有规律可循,平时多进行定时、定量的解题训练,才能突破弱项,提升速度,找到解题的感觉。