《如何学习数学建模算法》
在小学数学建模教学当中,教师需要根据学生学习情况和教材内容选择相应的建模形式,帮助学生更好、更准确快速地找到解题关键。那么如何学习数学建模算法呢?下面小编就同大家聊聊关于如何学习数学建模算法的问题,希望有所帮助!
1如何学习数学建模算法
利用数学建模的方法可以解决生活中的实际问题,那么我们先来了解一下怎样将数学建模引入小学的教学课堂上。解答数学题最基本的方式就是四个步骤:设、列、解、答,小学数学的应用题也是按照这几个步骤来作答的,所以学生对它已经不陌生,关键是数学建模的思想,让学生根据观察和逻辑思维以及数学知识的运用,找出题目中已知与未知之间的关联,还要让学生自己验证、测试所得到的答案是否正确,这种循环往复的求解过程可以帮助学生形成自己的知识体系,并在不断的学习过程中完善自身的知识结构。
想要学好数学建模思想,需要学习的内容特别多,因为数学建模里面包含的范围非常广,有公式、原理、定义、方程等一些数学知识,还包括具体问题中涉及的不同学科领域的知识,所以学生需要掌握的知识也特别多。在学习数学建模的过程中,往往会遇到很多没见过的知识,需要查阅资料等,所以教师要培养学生坚持不懈的精神、迎难而上的品质,不能遇到了没有见过的题或者不会的知识就有放弃学习数学建模的念头。老师要及时地跟学生及其家长沟通、交流,了解孩子的内心想法,不是一味地灌输理论知识,懂得跟学生谈心,讲道理,家长也要向老师汇报学生的学习状况和家庭作业的完成情况,如果基本的课内知识都消化不了,就先让学生完成好家庭作业,做到不拖延,养成良好的习惯。老师要根据家长的反馈情况进行改进培养学生的方法,做到贴合实际地教学。
将数学建模思想引入小学课堂教学是一件越来越被人们接受的事情,刚开始大家一定会觉得很新颖,所以教师一定要有主动性,全方面了解数学建模思想,让这个思维方式同自身的教学经验进行结合,将繁冗的理论知识用通俗易懂的语言表达出来,毕竟受众是小学生,他们的理解能力、接受能力还有待提高,如果一开始就传授深奥的知识,容易引起学生的逆反心理,对于学习感到有压力,造成不愿意学习的后果,所以教师要慢慢地让学生适应这种新方式的教学方法。
2小学数学建模应用
模型假设:掌握建模本质,设计合理预测。在模型假设阶段是根据建模对象的相关特性和目的对问题条件和实际情景进行全面观察、对比、分析、抽象、概括,从而进一步合理监护,采取精准的语言对相关问题提出符合题意的假设,这也是建模关键。当然在假设当中需要对问题主次进行区分,因为假设问题并不能包括全部,只能舍去次要,抓住问题本质,为模型构建提供正确方向。
模型构建:选择恰当的解决策略,根据实情建模。所以教师建模时需要站在学生认知起点和视野下,让学生亲自运用相应策略自主构建数学模型。比如在《植树问题》教学当中,教师让学生选择喜欢或熟练的方式解决“在20m长的城市绿化带中植树,每隔5m种植一棵,那么一共需要种植多少棵(道路两旁都需要)。”在这个过程中部分学生绘出绿化带图、部分学生用三角形表示,部分学生直接用乘除公式计算。学生在多种计算方式当中得出“植树棵数=绿化带总长÷间隔长度+1”的数学模型。在寻找解决策略时还需要根据教学实际进行。
模型应用:回归实际,拓展模型应用范围。数学模型的作用是为了更准确描述相应问题和实际情景,所以最终需要回到实际生活当中,让学生在建模过程中充分认识社会、自然现象,让抽象数学知识变得更为直观,寻找出正确有效的解题方式。
3学习数学建模课程方法
首先,我在学习数学建模这门课程后才发现和意识到:数学建模是人们运用科学的数学思想、方法与知识去认识世界和改造世界的一门既古老又富有创造性、挑战性并在不断快速发展的重要数学分支之一,它是一个能把科学有用的数学思想方法和理论知识与自然界和社会科学中的客观实际问题有机地联系起来的重要科学桥梁和平台,是一门基础数学与应用数学日益相互渗透、相互促进的、富有科研活力的交叉学科,它的研究与发展是永远没有止境的,它能有效、快速地提高人们的创造力和创新意识,是各类学校对学生进行理论教学与实践教学的最佳结合点、切入点和突破口。
尤其能有效地培养当今大学生的创新思维与能力。同时,数学建模的各种理论与思想方法的普及、数学建模的各种理论研究及其发展,对当前世界各国和各种行业带来了巨大的经济效益和不可估量的社会效益,并将对人类社会和经济发展产生深远的影响。因此,各类学校的教育工作者,特别是数学教师在教学与科研的工作中要更加自觉地注重数学建模的各种理论与思想方法的学习、研究及其应用。
其次,我对数学建模的理解已经发生了深刻、彻底的变化。学习这门课程之前,我总是认为:数学建模只不过是一整套现成的、千古不变的、直接套用的数学模式或公式与算法,是一种十分短视或者说应试背景下没有多少实际意义和新意的行为,只是教给学生一整套固定下来的数学模式或公式又缺少了创造性与灵活性的“死”东西,是一种通过传统的教学行为让学生接受而使之成为其解决问题的一种传统的、永恒不变的、缺乏创新思维的工具。通过全面系统学习和研究这门课程之后,我深深地感到:数学建模的方法与内容不仅不是一成不变和千篇一律的,而且是与时俱进、灵活多样和丰富多彩的。
可以说,在我们的学习、工作和生活中到处都存在各种各样的数学建模理论、思想与方法,到处都会碰到各种各样的需要运用数学建模理论、思想与方法去解决的问题,甚至是非常复杂的难题。所以说,数学建模本质上是一种动态的或者说是一种有型而又不可僵化定型的、日新月异、不断向前发展的东西,是可以助力学生发展创造性思维与能力,培养学生创新意识与能力,并最终可以成为学生数学与科研素养的一个重要组成部分。所以各类学校应更加注重数学建模课的开设、研究和教学工作,同时各类学校也要加强对师资人才的精心培养与引进,让更多的在校大学生学好数学建模的一些理论、思想与方法,从而为他们日后能早日创新做好应有的知识储备,也为他们日后能应用数学建模的思想、理论知识与方法来解决生活中所遇到的各种各样的实际问题而所需要的一些必要的数学修养打下良好的基础。